Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 10
293
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Thermal damage during ablation of biological tissues

ORCID Icon, ORCID Icon & ORCID Icon
Pages 685-701 | Received 26 Dec 2017, Accepted 10 Apr 2018, Published online: 04 Jun 2018

References

  • A. J. Welch, J. W. Valvano, J. A. Pearce, L. J. Hayes, and M. Motamedi, “Effect of laser radiation on tissue during laser angioplasty,” Lasers Surg. Med., vol. 5, pp. 251–264, 1985. DOI: 10.1002/lsm.1900050307.
  • F. Partovi et al., “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med., vol. 7, pp. 141–154, 1987. DOI: 10.1002/lsm.1900070202.
  • A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev., vol. 103, pp. 577–644, 2003. DOI: 10.1021/cr030683b.
  • C. Brace, “Thermal tumor ablation in clinical use, IEEE Pulse, vol. 2, no. 5, pp. 28–38, 2011. DOI: 10.1109/MPUL.2011.942603.
  • S. N. Goldberg et al., “Image-guided tumor ablation: standardization of terminology and reporting criteria,” Radiology, vol. 235, no. 3, pp. 728–739, 2005. DOI: 10.1148/radiol.2353042205.
  • K. F. Chu and D. E. Dupuy, “Thermal ablation of tumours: biological mechanisms and advances in therapy,” Nat. Rev. Cancer, vol. 14, pp. 199–208, 2014. DOI: 10.1038/nrc3672.
  • R. W. Habash, R. Bansal, D. Krewski, and H. T. Alhafid, “Thermal therapy, part III: ablation techniques,” Crit. Rev. Biomed. Eng., vol. 35, no. (1–2), pp. 37–121, 2007. DOI: 10.1615/CritRevBiomedEng.v35.i1-2.20.
  • F. Morady, “Radio-frequency ablation as treatment for cardiac arrhythmias,” N. Engl. J. Med., vol. 340, no. 7, pp. 534–544, 1999. DOI: 10.1056/NEJM199902183400707.
  • Y.F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” W. J. Clin. Oncol., vol. 2, no. 1, pp. 8–27, 2011. DOI: 10.5306/wjco.v2.i1.8.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • J. P. Abraham and E. M. Sparrow, “A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties,” Int. J. Heat Mass Transf., vol. 50, pp. 2537–2544, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.11.045.
  • F. C. Henriques Jr. and A. R. Moritz, “Studies of thermal injury. I. The conduction of heat to and through skin and the temperatures attained therein: a theoretical and an experimental investigation,” Am. J. Pathol., vol. 23, pp. 531–549, 1947.
  • A. R. Moritz and F. C. Henriques Jr., “Studies of thermal injury: II. The relative importance of time and surface temperature in the causation of cutaneous burns,” Am. J. Pathol., vol. 23, no. 5, pp. 695–720, 1947.
  • A. R. Moritz, “Studies of thermal injury: III. The pathology and pathogenesis of cutaneous burns: an experimental study,” Am. J. Pathol., vol. 23, no. 6, pp. 915–941, 1947.
  • F. C. Henriques Jr., Studies of thermal injury: V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury, Arch. Pathol., vol. 43, no. 5, pp. 489–502, 1947.
  • S. L. Thomsen and J. A. Pearce, “Thermal damage and rate processes in biological tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, 2nd ed., chap. 13, A. J. Welch and M. J. C. VanGemert, Eds. Dordrecht, Netherlands: Springer Science + Business Media B.V., 2011, pp. 487–549.
  • N.T. Wright, “Quantitative models of thermal damage to cells and tissues,” in Heat Transfer and Fluid Flow in Biological Processes, chap. 3, S. M. Becker and A. V. Kuznetsov, Eds. Amsterdam, NY, USA: Elsevier, 2015, pp. 59–76.
  • J. A. Pearce, S. L. Thomsen, H. Vijverberg, and T. J. McMurray, Kinetics for birefringence changes in thermally coagulated rat skin collagen,” Proc. SPIE., vol. 1876, pp. 180–186, 1993. DOI: 10.1117/12.147029.
  • J. A. Pearce, “Comparative analysis of mathematical models of cell death and thermal damage process,” Int. J. Hyperthermia, vol. 29, no. 4, pp. 262–280, 2013. DOI: 10.3109/02656736.2013.786140.
  • C. E. Weir, “Rate of shrinkage of tendon collagen: heat, entropy, and free energy of activation of the shrinkage of untreated tendon; effect of acid, salt, pickle, and tannage on the activation of tendon collagen,” J. Res. Natl. Bur. Stand., vol. 42, pp. 17–32, 1949. DOI: 10.6028/jres.042.002.
  • S. S. Chen, N. T. Wright, and J. D. Humphrey, “Phenomenological evolution equations for heat-induced shrinkage of a collagenous tissue,” IEEE Trans. Biomed. Eng., vol. 45, no. 10, pp. 1234–1240, 1998. DOI: 10.1109/10.720201.
  • S. S. Chen, N. T. Wright, and J. D. Humphrey, “Heat-induced changes in the mechanics of a collagenous tissue: isothermal free shrinkage,” ASME J. Biomech. Eng., vol. 119, no. 4, pp. 372–378, 1997. DOI: 10.1115/1.2798281.
  • M. S. Wall, X-H Deng, P. A. Torzilli, S. B. Doty, S. J. O’Brien, and R. F. Warren, “Thermal modification of collagen,” J. Shoulder Elbow Surg., vol. 8, no. 4, pp. 339–344, 1999. DOI: 10.1016/S1058-2746(99)90157-X.
  • J. A. Pearce, I. Çilesiz, A. J. Welch, E. Chan, T. McMurray, and S. Thomsen, “Comparison of Ho:YAG, Tm:YAG and argon lasers for fusion of intestinal tissues,” Proc. SPIE., vol. 2128, pp. 517–526, 1994. DOI: 10.1117/12.184938.
  • H. A. Johnson and M. Pavelec, “Thermal injury due to normal body temperature,” Am. J. Pathol., vol. 66, pp. 557–564, 1972.
  • W. C. Dewey, L. E. Hopwood, S.A. Sapareto, and L. E. Gerweck, “Cellular responses to combinations of hyperthermia and radiation.,” Radiology, vol. 123, pp. 463–479, 1977. DOI: 10.1148/123.2.463.
  • G.M. Hahn, Hyperthermia and Cancer. New York, NY: Plenum Press, 1982.
  • J. L. Roti Roti and K. J. Henle, “Comparison of two mathematical models for describing heat-induced cell killing,” Rad. Res., vol. 81, pp. 374–83, 1980. DOI: 10.2307/3575196.
  • Y. Feng, J. T. Oden, and M. N. Rylander, “A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments,” J. Biomech. Eng., vol. 130, no. 4, pp. 1–13, 2008. DOI: 10.1115/1.2947320.
  • D.P. O’Neill et al., “A three-state mathematical model of hyperthermic cell death,” Ann. Biomed. Eng., vol. 39, pp. 570–579, 2011. DOI: 10.1007/s10439-010-0177-1.
  • S. L. Thomsen, “Mapping of thermal injury in biologic tissues using quantitative pathologic techniques,” Proc. SPIE., vol. 3594, pp. 82–95, 1999. DOI: 10.1117/12.348748.
  • S. L. Thomsen and J. A. Pearce, Temperatures associated with thermally induced red blood cell changes in tissues irradiated in vivo,” Proc. SPIE., vol. 2130, pp. 156–163, 1994 DOI: 10.1117/12.179925.
  • A. J. Welch et al., “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation., vol. 76, no. 6, pp. 1353–1363, 1987. DOI: 10.1161/01.CIR.76.6.1353.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, New York, NY: Hemisphere Publishing Corporation, 1980.
  • M. N. Ozisik, H. R.B. Orlande, M. J. Colaço, and R. M. Cotta, Finite Difference Methods in Heat Transfer, vol. 2, 2nd ed. Boca Raton, FL: CRC Press, 2017, p.564.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • S. W. J. Welch and J. Wilson, A volume of fluid based method for fluids flows with phase change, J. Comput. Phys., vol. 160, pp. 662–682, 2000. DOI: 10.1006/jcph.2000.6481.
  • N. J. Ruperti Jr. and R. M. Cotta, Heat Conduction with Ablation in Multilayered Media, 11th Brazilian Congress of Mechanical Engineering. São Paulo: XI COBEM, 1991, pp. 413–416.
  • I. B. Celik, U. Ghia, and P. J. Roache, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng., vol. 130, pp. 1–4, 2008. DOI: 10.1115/1.2960953.
  • Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, Chap. 2, ASME V&V 20, 2009.
  • J. H. Lambert, Photometry or On the Measure and Gradations of Light, Color, and Shade, Translate by David L. DiLaura, Augsburg, Illuminating Engineering Society, 2001.
  • S. L. Jacques and S. A. Prahl, “Modelling optical and thermal distributions in tissue during laser irradiation, Lasers Surg. Med., vol. 6, no. 6, pp. 494–503, 1987. DOI: 10.1002/lsm.1900060604.
  • D. L. Youngs, “Time-dependent multi-material flow with large fluid distortion,” in Numerical Methods for Fluids Dynamics, K. W. Morton and M. J. Baines, Eds. New York, NY: Academic Press, 1982, pp. 273–285.
  • D. L. Youngs, An interface tracking method for a 3D Eulerian hydrodynamics code, Atomic Weapon Research Establishment, 1984.
  • H. H. Mitchell, T. S. Hamilton, F. R. Steggerda, and H. W. Bean, “The chemical composition of the adult human body and its bearing on the biochemistry of growth,” J. Biol. Chem., vol. 158, pp. 625–637, 1945.
  • T. E. Cooper and G. J. Trezek, Correlation of thermal properties of some human tissues with water content. Aerospace Med., vol. 42, no. 1, pp. 24–27, 1971.
  • J. A. Pearce, “Numerical models of laser fusion of intestinal tissues,” presented at the 31st Annu. Inter. Confer. of the IEEE EMBS. Minnesota, USA, pp. 4303–4306, Sep 2009. DOI: 10.1109/IEMBS.2009.5333797.
  • P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Applied Optics, vol. 28, no. 12, pp. 2325–2330, 1989. DOI: 10.1364/AO.28.002325.
  • K. Matthewson, P. Coleridge-Smith, J. P. O’Sullivan, T. C. Northfield, and S. G. Bown, “Biological effects of intrahepatic neodymium: yttrium-aluminum-garnet laser photocoagulation in rats,” Gastroenterology., vol. 93, pp. 550–557, 1987. DOI: 10.1016/0016-5085(87)90918-8.
  • M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics, 5th ed. New York, NY: John Wiley & Sons, Inc., 2006, p.721.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. New York, NY: John Wiley & Sons, Inc., 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.