Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 12
236
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of differential versus Rayleigh–Bénard heating via heat flow visualization for thermal convection due to heating at enclosures with concave/convex walls

&
Pages 823-848 | Received 22 Jan 2018, Accepted 04 May 2018, Published online: 18 Jun 2018

References

  • N. O. Moraga, C. H. Salinas, “Numerical study on unsteady 2D natural convection and solidification of a food inside a freezing chamber,” Numer. Heat Transfer Part A, vol. 37, pp. 755–777, 2000.
  • Y. C Feng, H. X. Li, L. X. Li, F. L. Zhan, “Investigation of the effect of magnetic field on melting of solid gallium in a bottom-heated rectangular cavity using the lattice Boltzmann method,” Numer. Heat Transfer Part A, vol. 69, pp. 1263–1279, 2016. DOI: 10.1080/10407782.2015.1127732.
  • D. L. Tang, L. P. Li, C. F. Song, W. Q. Tao, Y. L. He, “Numerical thermal analysis of applying insulation material to holes in hollow brick walls by the finite-volume method,” Numer. Heat Transfer Part A, vol. 68, pp. 526–547, 2015. DOI: 10.1080/10407782.2014.986396.
  • M. D. Muhammad, O. Badr, H. Yeung, “CFD modeling of the charging and discharging of a shell-and-tube latent heat storage system for high-temperature applications,” Numer. Heat Transfer Part A, vol. 68, pp. 813–826, 2015. DOI: 10.1080/10407782.2015.1023094.
  • S. W. Choi, W. I. Lee, H. S. Kim, “Numerical analysis of convective flow and thermal stratification in a cryogenic storage tank,” Numer. Heat Transfer Part A, vol. 71, pp. 402–422, 2017. DOI: 10.1080/10407782.2016.1264771.
  • A. H. Saberi, M. Kalteh, “Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice Boltzmann method,” Numer. Heat Transfer Part A, vol. 70, pp. 1390–1401, 2016. DOI: 10.1080/10407782.2016.1244394.
  • R. Sadeghi, M. S. Shadloo, K. Hooman, “Numerical investigation of the natural convection film boiling around elliptical tubes,” Numer. Heat Transfer Part A, vol. 70, pp. 707–722, 2016. DOI: 10.1080/10407782.2016.1214484.
  • G.J. Yu, B. Yu, Y. T. Liang, M. Wang, Y. Joshi, D. L. Sun, “A new general model for phase-change heat transfer of waxy crude oil during the ambient-induced cooling process,” Numer. Heat Transfer Part A, vol. 71, pp. 511–527, 2017. DOI: 10.1080/10407782.2016.1277934.
  • R. Nasrin, S. Parvin, M. A. Alim, “Heat transfer and collector efficiency through a direct absorption solar collector with radiative heat flux effect,” Numer. Heat Transfer Part A, vol. 68, pp. 887–907, 2015. DOI: 10.1080/10407782.2015.1023122.
  • F. Wu, D. Lu, G. Wang, “Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal nonequilibrium model,” Numer. Heat Transfer Part A, vol. 69, pp. 1280–1296, 2016. DOI: 10.1080/10407782.2015.1127025.
  • F. Wu, W. Zhou, G. Wang, X. Ma, Y. Wang, “Numerical simulation of natural convection in a porous cavity with linearly temperature distributions under the local thermal nonequilibrium condition,” Numer. Heat Transfer Part A, vol. 68, pp. 1394–1415, 2015. DOI: 10.1080/10407782.2015.1052316.
  • M. A. Sheremet, “Unsteady conjugate natural convection in a three-dimensional porous enclosure,” Numer. Heat Transfer Part A, vol. 68, pp. 243–267, 2015. DOI: 10.1080/10407782.2014.977172.
  • P. H. S. Carvalho, M. J. S. de Lemos, “Passive laminar heat transfer across porous cavities using the thermal non-equilibrium model,” Numer. Heat Transfer Part A, vol. 66, pp. 1173–1194, 2014. DOI: 10.1080/10407782.2014.892384.
  • M. Zeng, P. Yu, F. Xu, Q. W. Wang, “Natural convection in triangular attics filled with porous medium heated from below,” Numer. Heat Transfer Part A, vol. 63, pp. 735–754, 2013. DOI: 10.1080/10407782.2013.756702.
  • S. Sivasankaran, M. Bhuvaneswari, “Natural convection in a porous cavity with sinusoidal heating on both sidewalls,” Numer. Heat Transfer Part A, vol. 63, pp. 14–30, 2013. DOI: 10.1080/10407782.2012.715985.
  • A. J. Chamkha, M. A. Ismael, “Conjugate heat transfer in a porous cavity heated by a triangular thick wall,” Numer. Heat Transfer Part A, vol. 63, pp. 144–158, 2013. DOI: 10.1080/10407782.2012.724327.
  • F. Moukalled, M. Darwish, “Natural convection heat transfer in a porous rhombic annulus,” Numer. Heat Transfer Part A, vol. 58, pp. 101–124, 2010. DOI: 10.1080/10407782.2010.497322.
  • B.V.R Kumar, Shalini, “Natural convection in a thermally stratified wavy vertical porous enclosure,” Numer. Heat Transfer Part A, vol. 43, pp. 753–776, 2003. DOI: 10.1080/713838124.
  • A. Misirlioglu, A. C. Baytas, I. Pop, “Free convection in a wavy cavity filled with a porous medium,” Int. J. Heat Mass Trans. vol. 48, pp. 1840–1850, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.12.005.
  • S. Das, Y. S. Morsi, “A non-Darcian numerical modeling in domed enclosures filled with heat generating porous media,” Numer. Heat Transfer Part A, vol. 48, pp. 149–164, 2005. DOI: 10.1080/10407780590921926.
  • X. B. Chen, P. Yu, S. H. Winoto, H. T. Low, “Free convection in a porous wavy cavity based on the Darcy-Brinkman-Forchheimer extended model,” Numer. Heat Transfer Part A, vol. 52, pp. 377–397, 2007. DOI: 10.1080/10407780701301595.
  • K. Khanafer, B. Al-Azmi, A. Marafie, I. Pop, “Non-Darcian effects on natural convection heat transfer in a wavy porous enclosure,” Int. J. Heat Mass Trans., vol. 52, pp. 1887–1896, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.08.040.
  • A. Sojoudi, S. C. Saha, M. Khezerloo, Y. T. Gu, “Unsteady natural convection within a porous enclosure of sinusoidal corrugated side walls,” Trans. Por. Med., vol. 104, pp. 537–552, 2014. DOI: 10.1007/s11242-014-0347-y.
  • S. Bhardwaj, A. Dalal, S. Pati, “Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure,” Energy, vol. 79, pp. 467–481, 2015. DOI: 10.1016/j.energy.2014.11.036.
  • A. A. Nepomnyashchy, I. B. Simanovskii, “Nonlinear investigation of anti-convection and Rayleigh–Bénard convection in systems with heat release at the interface,” Eur. J. Mech B – Fluids, vol. 20, pp. 75–86, 2001. DOI: 10.1016/S0997-7546(00)01099-2.
  • H. Inaba, C. Dai, A. Horibe, “Numerical simulation of Rayleigh–Bénard convection in non-Newtonian phase-change-material slurries,” Int. J. Therm. Sci., vol. 42, pp. 471–480, 2003. DOI: 10.1016/S1290-0729(02)00048-0.
  • P. Y. Tzeng, M. H. Liu, “Influence of number of simulated particles on DSMC modeling of micro-scale Rayleigh–Bénard flows,” Int. J. Heat Mass Trans., vol. 48, pp. 2841–2855, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.01.017.
  • P. Kumar, K. Srinivasan, P. Dutta, “Visualization of convection loops due to Rayleigh–Bénard convection during solidification,” Mech. Res. Commun., vol. 33, pp. 593–600, 2006. DOI: 10.1016/j.mechrescom.2005.08.001.
  • G. F. Al-Sumaily, M. C. Thompson, “Bénard convection from a circular cylinder in a packed bed,” Int. Commun. Heat Mass Trans., vol. 54, pp. 18–26, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.02.021.
  • S. Kimura, A. Bejan, “The heatline visualization of convective heat transfer,” J. Heat Trans., vol. 105, pp. 916–919, 1983. DOI: 10.1115/1.3245684.
  • A. Dalal, M. K. Das, “Heatline method for the visualization of natural convection in a complicated cavity,” Int. J. Heat Mass Trans., vol. 51, pp. 263–272, 2008.
  • P. Biswal, T. Basak, “Bejan’s heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls,” Energy, vol. 64, pp. 69–94, 2014. DOI: 10.1016/j.energy.2013.10.032.
  • T. Basak, R. Anandalakshmi, P. Biswal, “Analysis of convective heat flow visualization within porous right angled triangular enclosures with a concave/convex hypotenuse,” Numer. Heat Transfer Part A, vol. 64, pp. 621–647, 2013. DOI: 10.1080/10407782.2013.790265.
  • Z. Y. Guo, D. Y. Li, B. X. Wang, “A novel concept of heat transfer enhancement,” Int. J. Heat and Mass Trans., vol. 41, pp. 2221–2225, 1998. DOI: 10.1016/S0017-9310(97)00272-X.
  • A. Bejan, “Heatlines (1983) versus synergy (1998),” Int. J Heat Mass Trans., vol. 81, pp. 654–658, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.056.
  • C. T. Hsu, P. Cheng, “Thermal dispersion in porous media,” Int. J. Heat Mass Trans., vol. 33, pp. 1587–1597, 1990. DOI: 10.1016/0017-9310(90)90015-M.
  • K. Vafai, C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media,” Int. J. Heat Mass Trans., vol. 24, pp. 195–203, 1981. DOI: 10.1016/0017-9310(81)90027-2.
  • K. Vafai, C. L. Tien, “Boundary and inertia effects on convective mass transfer in porous media,” Int. J. Heat Mass Trans., vol. 25, pp. 1183–1190, 1982. DOI: 10.1016/0017-9310(82)90212-5.
  • D. A. Nield, A. Bejan, Convection in Porous Media, 3rd ed., New York: Springer, 2006.
  • D. B. Ingham, I. Pop, Transport Phenomena in Porous Media, 1st ed., Oxford: Pergamon, 1998.
  • J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed., NY: McGraw-Hill, 1993.
  • A. K. Singh, T. Basak, A. Nag, S. Roy, “Heatlines and thermal management analysis for natural convection within inclined porous square cavities,” Int. J. Heat Mass Trans., vol. 87, pp. 583–597, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.043.
  • P. Biswal, T. Basak, “Sensitivity of heatfunction boundary conditions on invariance of Bejans heatlines for natural convection in enclosures with various wall heatings,” Int. J. Heat Mass Trans., vol. 89, pp. 1342–1368, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.030.
  • E. Natarajan, T. Basak, S. Roy, “Natural convection flows in a trapezoidal enclosure with uniform and non-uniform heating of bottom wall,” Int. J. Heat Mass Trans., vol. 51, pp. 747–756, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.04.027.
  • P. Nithiarasu, K. N. Seetharamu, T. Sundararajan, “Natural convective heat transfer in a fluid saturated variable porosity medium,” Int. J. Heat Mass Trans., vol. 40, pp. 3955–3967, 1997. DOI: 10.1016/S0017-9310(97)00008-2.
  • Q. H. Deng, G. F. Tang, “Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline,” Int. J. Heat Mass Trans., vol. 45, pp. 2373–2385, 2002. DOI: 10.1016/S0017-9310(01)00316-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.