Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 73, 2018 - Issue 10
210
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A discrete multicomponent droplet evaporation model; effects of O2-enrichment, steam injection, and EGR on evaporation of diesel droplet

&
Pages 721-742 | Received 28 Jan 2018, Accepted 10 May 2018, Published online: 14 Jun 2018

References

  • A. Velji, M. Lüft, and S. Merkel, “Mixture formation, combustion and pollutant emissions in high-speed direct-injection diesel engines,” Advanced Direct Injection Combustion Engine Technologies and Development: Diesel Engines. H. Zhao, Ed. Chap. 3, Cornwall: Elsevier, 2009.
  • Y. Liang, G. Shu, H. Wei, and W. Zhang, “Effect of oxygen enriched combustion and water–diesel emulsion on the performance and emissions of turbocharged diesel engine,” Energ. Convers. Manag., vol. 73, no. 1, pp. 69–77, 2013. DOI: 10.1016/j.enconman.2013.04.023.
  • R. B. Poola and R. Sekar, “Reduction of NOx and particulate emissions by using oxygen-enriched combustion air in a locomotive diesel engine,” J. Eng. Gas Turbines Power., vol. 125, no. 2, pp. 524–533, 2003. DOI: 10.1115/1.1563236.
  • Q. Tan and Y. Hu, “A study on the combustion and emission performance of diesel engines under different proportions of O2 & N2 & CO2,” Appl. Ther. Eng., vol. 108, no. 1, pp. 508–515, 2016. DOI: 10.1016/j.applthermaleng.2016.07.151.
  • W. Zhang, Z. Chen, W. Li, G. Shu, B. Xu, and Y. Shen, “Influence of EGR and oxygen-enriched air on diesel engine NO–smoke emission and combustion characteristic,” Appl. Energ., vol. 107, no. 1, pp. 304–314, 2013. DOI: 10.1016/j.apenergy.2013.02.024.
  • W. Zhang, et al., “Influence of water emulsified diesel & oxygen-enriched air on diesel engine NO-smoke emissions and combustion characteristics,” Energy, vol. 55, no. 1, pp. 369–377, 2013. DOI: 10.1016/j.energy.2013.03.042.
  • G. Kökkülünk, G. Gonca, V. Ayhan, I. Cesur, and A. Parlak, “Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters,” Appl. Ther. Eng., vol. 54, no. 1, pp. 161–170, 2013. DOI: 10.1016/j.applthermaleng.2013.01.034.
  • G. Kökkülünk, A. Parlak, V. Ayhan, İ. Cesur, G. Gonca, and B. Boru, “Theoretical and experimental investigation of steam injected diesel engine with EGR,” Energy, vol. 74, no. 1, pp. 331–339, 2014. DOI: 10.1016/j.energy.2014.06.091.
  • G. Gonca, “Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend,” Energ. Convers. Manag., vol. 77, no. 1, pp. 450–457, 2014. DOI: 10.1016/j.enconman.2013.09.031.
  • D. T. Hountalas, S. I. Raptotasios, and T. C. Zannis, “Implications of exhaust gas, CO2, and N2 recirculation on heavy-duty diesel engine performance, soot, and NO emissions: a comparative study,” Energ. Fuel., vol. 27, no. 8, pp. 4910–4929, 2013. DOI: 10.1021/ef400289w.
  • P. S. Divekar, X. Chen, J. Tjong, and M. Zheng, “Energy efficiency impact of EGR on organizing clean combustion in diesel engines,” Energ. Convers. Manag., vol. 112, no. 1, pp. 369–381, 2016. DOI: 10.1016/j.enconman.2016.01.042.
  • C. Baumgarten, Mixture Formation in Internal Combustion Engines. Berlin: Springer Science & Business Media, 2006.
  • E. Curtis, A. Uludogan, and R. D. Reitz, “A new high pressure droplet vaporization model for diesel engine modeling,” SAE Technical Paper, No. 952431, 1995. DOI: 10.4271/952431.
  • B. Abramzon and W. A. Sirignano, “Droplet vaporization model for spray combustion calculation,” Int. J. Heat Mass Transf., vol. 32, no. 30, pp. 1605–1618, 1989. DOI: 10.1016/0017-9310(89)90043-4.
  • C. Yin, “Transient heating and evaporation of moving mono-component liquid fuel droplets,” Appl. Ther. Eng., vol. 104, no. 1, pp. 497–503, 2016. DOI: 10.1016/j.applthermaleng.2016.05.098.
  • S. Sazhin, et al., “A simplified model for bi-component droplet heating and evaporation,” Int. J. Heat Mass Transf., vol. 53, no. 21–22, pp. 4495–4505, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.044.
  • L. Liu, Y. Liu, M. Mi, Z. Wang, and L. Jiang, “Evaporation of a bicomponent droplet during depressurization,” Int. J. Heat Mass Transf., vol. 100, no. 1, pp. 615–626, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.007.
  • S. Sazhin, M. Al Qubeissi, R. Kolodnytska, A. Elwardany, R. Nasiri, and M. Heikal, “Modelling of biodiesel fuel droplet heating and evaporation,” Fuel, vol. 115, no. 1, pp. 559–572, 2014. DOI: 10.1016/j.fuel.2013.07.031.
  • W. A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays, 2nd ed. New York, NY, USA: Cambridge University Press, 2010.
  • M. Renksizbulut, M. Bussmann, and X. Li, “A droplet vaporization model for spray calculations,” Part. Part. Syst. Char., vol. 9, no. 9, pp. 59–65, 1992. DOI: 10.1002/ppsc.19920090110.
  • A. W. Cook, “Enthalpy diffusion in multicomponent flows,” Phys. Fluids., vol. 21, no. 5, p. 055109, 2009. DOI: 10.1063/1.3139305.
  • Y. Ra and R. D. Reitz, “A vaporization model for discrete multi-component fuel sprays,” Int. J. Multip. Flow., vol. 35, no. 2, pp. 101–117, 2009. DOI: 10.1016/j.ijmultiphaseflow.2008.10.006.
  • V. Ebrahimian and C. Habchi, “Towards a predictive evaporation model for multi-component hydrocarbon droplets at all pressure conditions,” Int. J. Heat Mass Transf. vol. 54, no. 15–16, pp. 3552–3565, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.03.031.
  • C. Tseng and R. Viskanta, “Effect of radiation absorption on fuel droplet evaporation,” Combust. Sci. Technol., vol. 177, no. 8, pp. 1511–1542, 2005. DOI: 10.1080/00102200590956696.
  • W. Long, P. Yi, M. Jia, L. Feng, and J. Cui, “An enhanced multi-component vaporization model for high temperature and pressure conditions,” Int. J. Heat Mass Transf., vol. 90, no. 1, pp. 857–871, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.038.
  • S. Sazhin, et al., “Transient heating of diesel fuel droplets,” Int. J. Heat Mass Transf., vol. 47, no. 14–16, pp. 3327–3340, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.01.011.
  • A. Kryukov, V. Y. Levashov, and S. Sazhin, “Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models,” Int. J. Heat Mass Transf., vol. 47, no. 12–13, pp. 2541–2549, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.01.004.
  • O. S. Abianeh and C. Chen, ‘A discrete multicomponent fuel evaporation model with liquid turbulence effects,” Int. J. Heat Mass Transf., vol. 55, no. 23–24, pp. 6897–6907, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.07.003.
  • L. Zhang and S. C. Kong, “Modeling of multi-component fuel vaporization and combustion for gasoline and diesel spray,” Chem. Eng. Sci., vol. 64, no. 16, pp. 3688–3696, 2009. DOI: 10.1016/j.ces.2009.05.013.
  • G. S. Zhu and R. D. Reitz, “A model for high pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics,” Int. J. Heat Mass Transf., vol. 42, no. 3, pp. 495–507, 2002. DOI: 10.1016/S0017-9310(01)00173-9.
  • P. Yi, W. Long, M. Jia, L. Feng, and J. Tian, “Development of an improved hybrid multi-component vaporization model for realistic multi-component fuels,” Int. J. Heat Mass Transf., vol. 77, no. 1, pp. 173–184, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.008.
  • L. Zhang and S. C. Kong, “Vaporization modeling of petroleum–biofuel drops using a hybrid multi-component approach,” Combust. Flame., vol. 157, no. 11, pp. 2165–2174, 2010. DOI: 10.1016/j.combustflame.2010.05.011.
  • X. Ma, F. Zhang, K. Han, and G. Song, “Numerical modeling of acetone–butanol–ethanol and diesel blends droplet evaporation process,” Fuel, vol. 174, no. 1, pp. 206–215, 2016. DOI: 10.1016/j.fuel.2016.01.091.
  • P. Yi, M. Jia, W. Long, L. Qiao, T. Yang, and L. Feng, “Evaporation of pure and blended droplets of diesel and alcohols (C2–C9) under diesel engine conditions,” Numer. Heat Transf. A Appl., vol. 71, no. 3, pp. 311–326, 2017. DOI: 10.1080/10407782.2016.1264749.
  • R. Banerjee, “Numerical investigation of evaporation of a single ethanol/iso-octane droplet,” Fuel, vol. 107, no. 1, pp. 724–739, 2013. DOI: 10.1016/j.fuel.2013.01.003.
  • S. Gavhane, S. Pati, and S. Som, “Evaporation of multicomponent liquid fuel droplets: influences of component composition in droplet and vapor concentration in free stream ambience,” Int. J. Ther. Sci., vol. 105, no. 8, pp. 83–95, 2016. DOI: 10.1016/j.ijthermalsci.2016.03.003.
  • P. Yi, L. Feng, M. Jia, W. Long, and J. Tian, “Development of an improved multi-component vaporization model for application in oxygen-enriched and EGR conditions,” Numer. Heat Transf. Part A Appl., vol. 66, no. 8, pp. 904–927, 2014. DOI: 10.1080/10407782.2014.892395
  • T. Poinsot, and D. Veynante, Theoretical and Numerical Combustion. Phliladelphia: RT Edwards Inc., 2005.
  • T. Kitano, J. Nishio, R. Kurose, and S. Komori, “Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation,” Combust. Flame., vol. 161, no. 2, pp. 551–564, 2014. DOI: 10.1016/j.combustflame.2013.09.009.
  • C. Chiang, M. Raju, and W. Sirignano, “Numerical analysis of convecting, vaporizing fuel droplet with variable properties,” Int. J. Heat Mass Transf., vol. 35, no. 5, pp. 1307–1324, 1992. DOI: 10.1016/0017-9310(92)90186-V.
  • K. Saha, E. Abu-Ramadan, and X. Li, “Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment,” Appl. Energy, vol. 93, no. 1, pp. 71–79, 2012. DOI: 10.1016/j.apenergy.2011.05.034.
  • B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., New York, NY, USA: McGraw-Hill, 2001.
  • B. J. McBride, M. J. Zehe, and S. Gordon, NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species, Washington, D.C., USA: National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field, 2002.
  • R. A. Svehla, “Transport Coefficients for the NASA Lewis Chemical Equilibrium Program,” Washington, DC, USA: NASA, 1995.
  • K. K. Kuo, Principles of Combustion, 2nd ed., Hoboken, NJ, USA: John Wiley & sons, 2005.
  • M. R. Riazi, Characterization and Properties of Petroleum Fractions, Philadelphia, PA, USA: ASTM, 2005.
  • C. L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons, Norwich, NY, USA: William Andrew, 2008.
  • T. E. Daubert, and R. P. Danner, API Technical Data Book-Petroleum Refining, Washington, DC, USA: American Petroleum Institute (API), 1997.
  • C. Chauveau, F. Halter, A. Lalonde, and I. Gökalp, “An experimental study on the droplet vaporization: Effects of heat conduction through the support fiber,” Como Lake, Italy: ILASS, 2008.
  • K. Han, G. Song, X. Ma, and B. Yang, “An experimental and theoretical study of the effect of suspended thermocouple on the single droplet evaporation,” Appl. Therm. Eng., vol. 101, no. 1, pp. 568–575, 2016. DOI: 10.1016/j.applthermaleng.2015.12.022.
  • X. Ma, F. Zhang, K. Han, B. Yang, and G. Song, “Evaporation characteristics of acetone–butanol–ethanol and diesel blends droplets at high ambient temperatures,” Fuel, vol. 160, no. 1, pp. 43–49, 2015. DOI: 10.1016/j.fuel.2015.07.079.
  • J. Stengele, K. Prommersberger, M. Willmann, and S. Wittig, “Experimental and theoretical study of one-and two-component droplet vaporization in a high pressure environment,” Int. J. Heat Mass Transf., vol. 42, no. 14, pp. 2683–2694, 1999. DOI: 10.1016/S0017-9310(98)00285-3.
  • B. Abramzon and S. Sazhin, “Convective vaporization of a fuel droplet with thermal radiation absorption,” Fuel, vol. 85, no. 1, pp. 32–46, 2006. DOI: 10.1016/j.fuel.2005.02.027.
  • A. Daıf, M. Bouaziz, X. Chesneau, and A. A. Cherif, “Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model,” Exp. Therm. Fluid Sci., vol. 18, no. 4, pp. 282–290, 1999. DOI: 10.1016/S0894-1777(98)10035-3.
  • H. Sun, B. Bai, and H. Zhang, “Comparative investigation on droplet evaporation models for modeling spray in cross-flow,” Heat Transf. Eng., vol. 35, no. 6–8, pp. 664–673, 2014. DOI: 10.1080/01457632.2013.837707.
  • L. Zhang and S. C. Kong, “High-pressure vaporization modeling of multi-component petroleum–biofuel mixtures under engine conditions,” Combust. Flame., vol. 158, no. 9, pp. 1705–1717, 2011. DOI: 10.1016/j.combustflame.2011.01.002.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, New York, NY: John Wiley & Sons, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.