Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 4
256
Views
1
CrossRef citations to date
0
Altmetric
Articles

Performance study of finned tube evaporative air cooler based on experiment and numerical simulation

, , , &
Pages 1154-1174 | Received 28 Feb 2018, Accepted 14 Jun 2018, Published online: 17 Oct 2018

References

  • F. C. McQuiston, J. D. Parker, and J. D. Spitler, Heating, Ventilating and Air Conditioning: Analysis and Design, 6th ed. New York: Wiley, 2004, pp. 22–45.
  • G. D. Kröger, Air-Cooled Heat Exchangers and Cooling Towers: Thermal-Flow Performance Evaluation and Design, vol. 1, Oklahoma: PennWell Books, 2004, pp. 12–26.
  • S. B. H. C. Neal, and J. A. Hitchcock, “A Study of the Heat Transfer Process in Banks of Finned Tube in Cross Flow, Using a Large Scale Model Technique,” Proceeding of the Third International Heat Transfer Conference, vol. 3. E. J. Le Fevre and J. W. Rose, Eds. New York, NY: ASME, 1966, pp. 290–298.
  • N. V. Zozulya, Y. P. Vorob'yev, and A. A. Khavin, “Effect of flow turbulization on heat transfer in a finned tube bundle,” Heat. Transfer. Soviet. Res., vol. 5, no. 1, pp. 154–156, 1973.
  • T. J. Rabas, P. W. Eckels, and R. A. Sabatino, “The effect of fin density on the heat transfer and pressure drop performance of low-finned tube banks,” Chem. Eng. Commu., vol. 10, no. 1–3, pp. 127–147, 1981. DOI: 10.1080/00986448108910930.
  • C. C. Wang, and K. Y. Chi, “Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: New experimental data,” Int. J. Heat. Mass. Trans., vol. 43, no. 15, pp. 2681–2691, 2000. DOI: 10.1016/S0017-9310(99)00332-4.
  • B. Watel, S. Harmand, and B. Desmet, “Experimental study of convective heat transfer from a rotating finned tube in transverse air flow,” Exp. Fluids., vol. 29, no. 1, pp. 79–90, 2000. DOI: 10.1007/s003480050429.
  • F. C. McQuiston, “Correlation of heat, mass and momentum transport coefficients for plate-fin-tube transfer surfaces with staggered tubes,” ASHRAE. Trans., vol. 84, pp. 294–308, 1978.
  • D. L. Gray, and R. L. Webb, “Heat Ttransfer and Friction Correlations for Plate Finned-tube Heat Exchangers Having Plain Fins,” Proceedings of the 8th International Heat Transfer Conference, vol. 6. C. L. Tien, V. P. Carey and J. K. Ferrell, Eds. Washington, DC: Hemisphere Publishing Corporation, 1986, pp. 2745–2750.
  • Y. Seshimo, and M. Fujii, “An Experimental Study on the Performance of Plate Fin and Tube Heat Exchangers at Low Reynolds Numbers,” Proceedings of the 1991 ASME JSME Thermal Engineering Joint Conference, vol. 6. J. R. Lloyd and Y. Kurosaki, Eds. New York, NY: ASME, 1991, pp. 449–454.
  • N. Kayansayan, “Heat transfer characterization of flat plain fins and round tube heat exchangers,” Exp. Therm. Fluid. Sci., vol. 6, no. 3, pp. 263–272, 1993. DOI: 10.1016/0894-1777(93)90067-S.
  • R. O. Parker, and R. E. Treybal, “The heat-mass-transfer characteristics of an evaporative cooler,” Chem. Eng. Prog. Sympos. Series., vol. 57, no. 32, pp. 138–149, 1962.
  • T. Mizushina, R. Ito, and H. Miyashita, “Experimental study of an evaporative cooler,” Chem. Eng., vol. 31, no. 5, pp. 469–473, 1967. DOI: 10.1252/kakoronbunshu1953.31.469.
  • T. Mizushina, R. Ito, and H. Miyashita, “Characteristics and methods of thermal design of evaporative coolers” Chem. Eng., vol. 32, no. 1, pp. 55–61, 1968. DOI: 10.1252/kakoronbunshu1953.32.55.
  • A. A. Dreyer, and P. J. Erens, “Heat and Mass Transfer Coefficient and Pressure Drop Correlations for A Crossflow Evaporative Cooler,” Proceedings of the Ninth International Heat Transfer Conference, vol. 6. S. J. Kline and N. H. Afgan, Eds. Washington, DC: Hemisphere Publishing Corporation. 1990, pp. 233–238.
  • Y. L. Tsay, “Analysis of heat and mass transfer in a countercurrent-flow wet surface heat exchanger,” Int. J. Heat Fluid Flow., vol. 15, no. 2, pp. 149–156, 1994. DOI: 10.1016/0142-727X(94)90069-8.
  • Y. Niitsu, K. Naito, and T. Anzai, “Studies on characteristics and design procedure of evaporative coolers,” J. SHASE, Japan, vol. 43, no. 7, pp. 581–590, 1969.
  • A. Hasan, and K. Siren, “Performance investigation of plain and finned tube evaporatively cooled heat exchangers,” Appl. Therm. Eng., vol. 23, no. 3, pp. 325–340, 2003. DOI: 10.1016/S1359-4311(02)00194-1.
  • R. Al-Waked, and M. Behnia, “CFD simulation of wet cooling towers,” Appl. Therm. Eng., vol. 26, no. 4, pp. 382–395, 2006. DOI: 10.1016/j.applthermaleng.2005.06.018.
  • J. K. Calautit, B. R. Hughes, H. N. Chaudhry, and S. A. Ghani, “CFD analysis of a heat transfer devices integrated wind tower system for hot and dry climate,” Appl. Energy., vol. 112, pp. 576–591, 2013. DOI: 10.1016/j.apenergy.2013.01.021.
  • Y. Zhao, F. Sun, Y. Li, G. Long, and Z. Yang, “Numerical study on the cooling performance of natural draft dry cooling tower with vertical Delta radiators under constant heat load,” Appl. Energy., vol. 149, pp. 225–237, 2015. DOI: 10.1016/j.apenergy.2015.03.119.
  • G. Gan, S. B. Riffat, L. Shao, and P. Doherty, “Application of CFD to closed-wet cooling towers,” Appl. Therm. Eng., vol. 21, no. 1, pp. 79–92, 2001. DOI: 10.1016/S1359-4311(00)00048-X.
  • A. Hasan, and G. Gan, “Simplification of analytical models and incorporation with CFD for the performance predication of closed‐wet cooling towers,” Int. J. Energy Res., vol. 26, no. 13, pp. 1161–1174, 2002. DOI: 10.1002/er.842.
  • F. Gu, C. Liu, X. Yuan, and G. Yu, “CFD simulation of liquid film flow on inclined plates,” Chem. Eng. Technol., vol. 27, no. 10, pp. 1099–1104, 2004. DOI: 10.1002/ceat.200402018.
  • J. Facao, and A. C. Oliveira, “Heat and mass transfer in an indirect contact cooling tower: CFD simulation and experiment,” Num. Heat Trans., A: Appl., vol. 54, no. 10, pp. 933–944, 2008. DOI: 10.1080/10407780802359104.
  • H. Hou, Q. Bi, and X. Zhang, “Numerical simulation and performance analysis of horizontal-tube falling-film evaporators in seawater desalination,” Int. Commun. Heat. Mass Trans., vol. 39, no. 1, pp. 46–51, 2012. DOI: 10.1016/j.icheatmasstransfer.2011.08.023.
  • D. Zhu, W. Zheng, G. Zhou, J. Wu, and Y. Shi, “Computational analysis of closed wet cooling towers,” Num. Heat Trans. A: Appl., vol. 63, no. 5, pp. 396–409, 2013. DOI: 10.1080/10407782.2013.733270.
  • X. Xie, C. He, T. Xu, B. Zhang, M. Pan, and Q. Chen, “Deciphering the thermal and hydraulic performances of closed wet cooling towers with plain, oval and longitudinal finned tubes,” Appl. Therm. Eng., vol. 120, pp. 203–218, 2017. DOI: 10.1016/j.applthermaleng.2017.03.138.
  • G. Liang, X. Mu, Y. Guo, and S. Shen, “Flow and heat transfer during a single drop impact on a liquid film,” Num. Heat. Trans. B: Fundamentals., vol. 69, no. 6, pp. 575–582, 2016. DOI: 10.1080/10407790.2016.1173496.
  • H. Liu, Y. Yan, M. Jia, M. Xie, and C. F. F. Lee, “Three-dimensional numerical investigation on wall film formation and evaporation in port fuel injection engines,” Num. Heat. Trans. A: Appl., vol. 69, no. 12, pp. 1405–1422, 2016. DOI: 10.1080/10407782.2016.1139960.
  • J. Zhou, X. Wang, D. Song, and D. Jing, “The effects of nanoparticle aggregation on the convection heat transfer investigated by a combined NDDM and DPM method,” Num. Heat. Trans., A: Appl., vol. 71, no. 7, pp. 754–768, 2017.
  • F. Bosnjakovic and K. F. Knoche, Technische Thermodinamik TeilII, 6th ed. Dresden: Theodor Steinkopf, 1996, pp. 261–262. DOI: 10.1080/10407782.2017.1308712.
  • A. B. Liu, D. Mather, and R. D. Reitz, “Modeling the effects of drop drag and breakup on fuel sprays,” SAE Transactions., vol. 102, pp. 83–95, 1993. DOI: 10.4271/930072.
  • T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, “Polymer electrolyte fuel cell model,” J. Electrochem. Soc., vol. 138, no. 8, pp. 2334–2342, 1991. DOI: 10.1149/1.2085971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.