Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 74, 2018 - Issue 6
267
Views
42
CrossRef citations to date
0
Altmetric
Articles

Thermal conductivity and dynamic viscosity modeling of Fe2O3/water nanofluid by applying various connectionist approaches

, , , , &
Pages 1301-1322 | Received 11 Apr 2018, Accepted 23 Jul 2018, Published online: 05 Nov 2018

References

  • B. Lamas, B. Abreu, A. Fonseca, N. Martins, and M. Oliveira, “Numerical analysis of percolation formation in carbon nanotube based nanofluids,” Int. J. Numer. Methods Eng., vol. 95, no. 3, pp. 257–270, 2013. DOI: 10.1002/nme.4510.
  • S. Parvin and A. J. Chamkha, “An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid,” Int. Commun. Heat Mass Transf., vol. 54, pp. 8–17, 2014. DOI: 10.1016/J.ICHEATMASSTRANSFER.2014.02.031.
  • S. Parvin, R. Nasrin, M. A. Alim, N. F. Hossain, and A. J. Chamkha, “Thermal conductivity variation on natural convection flow of water–alumina nanofluid in an annulus,” Int. J. Heat Mass Transf., vol. 55, no. 19–20, pp. 5268–5274, 2012. DOI: 10.1016/J.IJHEATMASSTRANSFER.2012.05.035.
  • T. E. Amin, G. Roghayeh, R. Fatemeh, and P. Fatollah, “Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency,” Energy Explor. Exploit., vol. 33, no. 5, pp. 659–676, 2015. DOI: 10.1260/0144-5987.33.5.659.
  • M. A. Nazari, R. Ghasempour, M. H. Ahmadi, G. Heydarian, and M. B. Shafii, “Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe,” Int. Commun. Heat Mass Transf., vol. 91, pp. 90–94, 2018. DOI: 10.1016/j.icheatmasstransfer.2017.12.006.
  • M. M. Tawfik, “Experimental studies of nanofluid thermal conductivity enhancement and applications: a review,” Renew. Sustain. Energy Rev., vol. 75, pp. 1239–1253, 2017. DOI: 10.1016/J.RSER.2016.11.111.
  • S. Ponmani, J. K. M. William, R. Samuel, R. Nagarajan, and J. S. Sangwai, “Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 443, pp. 37–43, 2014. DOI: 10.1016/j.colsurfa.2013.10.048.
  • O. A. Alawi, N. A. C. Sidik, H. W. Xian, T. H. Kean, and S. N. Kazi, “Thermal conductivity and viscosity models of metallic oxides nanofluids,” Int. J. Heat Mass Transf., vol. 116, pp. 1314–1325, 2018. DOI: 10.1016/J.IJHEATMASSTRANSFER.2017.09.133.
  • W. Cui, Z. Shen, J. Yang, and S. Wu, “Molecular dynamics simulation on flow behaviors of nanofluids confined in nanochannel,” Case Stud. Therm. Eng., vol. 5, pp. 114–121, 2015. DOI: 10.1016/j.csite.2015.03.007.
  • A. J. Chamkha, S. Abbasbandy, A. M. Rashad, and K. Vajravelu, “Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid,” Meccanica, vol. 48, no. 2, pp. 275–285, 2013. DOI: 10.1007/s11012-012-9599-1.
  • A. Gandomkar, M. H. Saidi, M. B. Shafii, M. Vandadi, and K. Kalan, “Visualization and comparative investigations of pulsating ferro-fluid heat pipe,” Appl. Therm. Eng., vol. 116, pp. 56–65, 2017. DOI: 10.1016/J.APPLTHERMALENG.2017.01.068.
  • M. Kahani, S. Z. Heris, and S. M. Mousavi, “Effects of curvature ratio and coil pitch spacing on heat transfer performance of Al2O3/water nanofluid laminar flow through helical coils,” J. Dispers. Sci. Technol., vol. 34, no. 12, pp. 1704–1712, 2013. DOI: 10.1080/01932691.2013.764485.
  • S. Akilu, A. T. Baheta, and K. V. Sharma, “Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions,” J. Mol. Liq., vol. 246, pp. 396–405, 2017. DOI: 10.1016/J.MOLLIQ.2017.09.017.
  • M. Bahiraei and S. M. Hosseinalipour, “Thermal dispersion model compared with Euler-Lagrange approach in simulation of convective heat transfer for nanoparticle suspensions,” J. Dispers. Sci. Technol., vol. 34, no. 12, pp. 1778–1789, 2013. DOI: 10.1080/01932691.2012.751339.
  • A. J. Chamkha and A. M. Rashad, “Natural convection from a vertical permeable cone in a nanofluid saturated porous media for uniform heat and nanoparticles volume fraction fluxes,” Int. J. Numer. Methods Heat Fluid Flow, vol. 22, no. 8, pp. 1073–1085, 2012. DOI: 10.1108/09615531211271871.
  • Z. T. Tabari and S. Z. Heris, “Heat transfer performance of milk pasteurization plate heat exchangers using MWCNT/water nanofluid,” J. Dispers. Sci. Technol., vol. 36, no. 2, pp. 196–204, 2015. DOI: 10.1080/01932691.2014.894917.
  • M. R. Salimpour, A. Abdollahi, and M. Afrand, “An experimental study on deposited surfaces due to nanofluid pool boiling: comparison between rough and smooth surfaces,” Exp. Therm. Fluid Sci., vol. 88, pp. 288–300, 2017. DOI: 10.1016/J.EXPTHERMFLUSCI.2017.06.007.
  • X. Fang et al., “Heat transfer and critical heat flux of nanofluid boiling: a comprehensive review,” Renew. Sustain. Energy Rev., vol. 62, pp. 924–940, 2016. DOI: 10.1016/J.RSER.2016.05.047.
  • A. V. Minakov, M. I. Pryazhnikov, D. V. Guzei, G. M. Zeer, and V. Y. Rudyak, “The experimental study of nanofluids boiling crisis on cylindrical heaters,” Int. J. Therm. Sci., vol. 116, pp. 214–223, 2017. DOI: 10.1016/J.IJTHERMALSCI.2017.02.019.
  • M. Dadjoo, N. Etesami, and M. N. Esfahany, “Influence of orientation and roughness of heater surface on critical heat flux and pool boiling heat transfer coefficient of nanofluid,” Appl. Therm. Eng., vol. 124, pp. 353–361, 2017. DOI: 10.1016/J.APPLTHERMALENG.2017.06.025.
  • T.-K. Hong, H.-S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of fe nanofluids,” J. Appl. Phys., vol. 97, no. 6, p. 064311, 2005. DOI: 10.1063/1.1861145.
  • J. Garg et al., “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid,” J. Appl. Phys., vol. 103, no. 7, p. 074301, 2008. DOI: 10.1063/1.2902483.
  • S. Kannaiyan et al., “Comparison of experimental and calculated thermophysical properties of alumina/cupric oxide hybrid nanofluids,” J. Mol. Liq., vol. 244, pp. 469–477, 2017. DOI: 10.1016/j.molliq.2017.09.035.
  • M. Zadkhast, D. Toghraie, and A. Karimipour, “Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation,” J. Therm. Anal. Calorim., vol. 129, no. 2, pp. 859–867, 2017. DOI: 10.1007/s10973-017-6213-8.
  • M. Sheikholeslami and D. D. Ganji, “Numerical modeling of magnetohydrodynamic CuO—water transportation inside a porous cavity considering shape factor effect,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 529, pp. 705–714, 2017. DOI: 10.1016/j.colsurfa.2017.06.046.
  • M. H. Esfe and M. H. Hajmohammad, “Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM,” J. Mol. Liq., vol. 238, pp. 545–552, 2017. DOI: 10.1016/J.MOLLIQ.2017.04.056.
  • A. A. Abdullah, S. A. Althobaiti, and K. A. Lindsay, “Marangoni convection in water–alumina nanofluids: dependence on the nanoparticle size,” Eur. J. Mech. – B/Fluids, vol. 67, pp. 259–268, 2018. DOI: 10.1016/J.EUROMECHFLU.2017.09.015.
  • D. Toghraie, V. A. Chaharsoghi, and M. Afrand, “Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 527–535, 2016. DOI: 10.1007/s10973-016-5436-4.
  • S. Z. Heris, M. Shokrgozar, S. Poorpharhang, M. Shanbedi, and S. H. Noie, “Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant,” J. Dispers. Sci. Technol., vol. 35, no. 5, pp. 677–684, 2014. DOI: 10.1080/01932691.2013.805301.
  • M. H. Esfe, H. Rostamian, M. Reza Sarlak, M. Rejvani, and A. Alirezaie, “Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating,” Physica E: Low-Dimens. Syst. Nanostruct., vol. 94, pp. 231–240, 2017. DOI: 10.1016/J.PHYSE.2017.07.012.
  • M. H. Esfe, M. R. H. Ahangar, M. Rejvani, D. Toghraie, and M. H. Hajmohammad, “Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data,” Int. Commun. Heat Mass Transf., vol. 75, pp. 192–196, 2016. DOI: 10.1016/J.ICHEATMASSTRANSFER.2016.04.002.
  • S. A. Sadatsakkak, M. H. Ahmadi, and M. A. Ahmadi, “Implementation of artificial neural-networks to model the performance parameters of Stirling engine,” Mech. Ind., vol. 17, no. 3, p. 307, 2016. DOI: 10.1051/meca/2015062.
  • M. Gholipour Khajeh, A. Maleki, M. A. Rosen, and M. H. Ahmadi, “Electricity price forecasting using neural networks with an improved iterative training algorithm,” Int. J. Ambient Energy, vol. 39, no. 2, pp. 147–158, 2018. DOI: 10.1080/01430750.2016.1269674.
  • M. H. Ahmadi et al., “Prediction of performance of Stirling engine using least squares support machine technique,” Mech. Ind., vol. 17, no. 5, p. 506, 2016. DOI: 10.1051/meca/2015098.
  • S. M. Pourkiaei, M. H. Ahmadi, and S. M. Hasheminejad, “Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network,” Mech. Ind., vol. 17, no. 1, p. 105, 2016. DOI: 10.1051/meca/2015050.
  • M. H. Esfe, H. Rostamian, M. R. Sarlak, M. Rejvani, and A. Alirezaie, “Rheological behavior characteristics of TiO2-MWCNT/10w40 hybrid nano-oil affected by temperature, concentration and shear rate: an experimental study and a neural network simulating,” Physica E: Low-Dimens. Syst. Nanostruct., vol. 94, pp. 231–240, 2017.
  • S. Kortesis and P. D. Panagiotopoulos, “Neural networks for computing in structural analysis: Methods and prospects of applications,” Int. J. Numer. Methods Eng., vol. 36, no. 13, pp. 2305–2318, 1993. DOI: 10.1002/nme.1620361310.
  • S. Yoshimura, A. Matsuda, and G. Yagawa, “New regularization by transformation for neural network based inverse analyses and its application to structure identification,” Int. J. Numer. Methods Eng., vol. 39, no. 23, pp. 3953–3968, 1996. DOI: 10.1002/(SICI)1097-0207(19961215)39:23 < 3953::AID-NME31 > 3.0.CO;2-O.
  • J. Ghaboussi, D. A. Pecknold, M. Zhang, and R. M. Haj-Ali, “Autoprogressive training of neural network constitutive models,” Int. J. Numer. Methods Eng., vol. 42, no. 1, pp. 105–126, 1998. DOI: 10.1002/(SICI)1097-0207(19980515)42:1 < 105::AID-NME356 > 3.0.CO;2-V.
  • A. A. Nadooshan, M. H. Esfe, and M. Afrand, “Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network,” J. Therm. Anal. Calorim., vol. 131, no. 3, pp. 2741–2748, 2018. DOI: 10.1007/s10973-017-6688-3.
  • A. Alirezaie, S. Saedodin, M. H. Esfe, and S. H. Rostamian, “Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-Engine Oil hybrid nanofluids and modelling the results with artificial neural networks,” J. Mol. Liq., vol. 241, pp. 173–181, 2017. DOI: 10.1016/J.MOLLIQ.2017.05.121.
  • M. H. Esfe, S. Esfande, and S. H. Rostamian, “Experimental evaluation, new correlation proposing and ANN modeling of thermal conductivity of ZnO-DWCNT/EG hybrid nanofluid for internal combustion engines applications,” Appl. Therm. Eng., vol. 133, pp. 452–463, 2018. DOI: 10.1016/J.APPLTHERMALENG.2017.11.131.
  • M. H. Esfe, S. Esfandeh, S. Saedodin, and H. Rostamian, “Experimental evaluation, sensitivity analyzation and ANN modeling of thermal conductivity of ZnO-MWCNT/EG-water hybrid nanofluid for engineering applications,” Appl. Therm. Eng., vol. 125, pp. 673–685, 2017. DOI: 10.1016/J.APPLTHERMALENG.2017.06.077.
  • M. Afrand, M. H. Esfe, E. Abedini, and H. Teimouri, “Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data,” Physica E: Low-Dimens. Syst. Nanostruct., vol. 87, pp. 242–247, 2017. DOI: 10.1016/j.physe.2016.10.020.
  • M. H. Esfe, M. Rejvani, R. Karimpour, and A. A. A. Arani, “Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT-Al2O3 nanoparticles by correlation and ANN methods using experimental data,” J. Therm. Anal. Calorim., vol. 128, no. 3, pp. 1359–1371, 2017. DOI: 10.1007/s10973-016-6002-9.
  • M. Shamaeil, M. Firouzi, and A. Fakhar, “The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid,” J. Therm. Anal. Calorim., vol. 126, no. 3, pp. 1455–1462, 2016. DOI: 10.1007/s10973-016-5548-x.
  • M. H. Esfe, S. Esfandeh, and M. Rejvani, “Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications,” J. Therm. Anal. Calorim., vol. 131, no. 2, pp. 1437–1447, 2018. DOI: 10.1007/s10973-017-6680-y.
  • M. H. Esfe, A. A. A. Arani, R. S. Badi, and M. Rejvani, “ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO2/EG hybrid nanofluid for higher heat transfer,” J. Therm. Anal. Calorim., vol. 131, no. 3, pp. 2381–2393, 2018. DOI: 10.1007/s10973-017-6744-z.
  • M. Vakili, M. Karami, S. Delfani, S. Khosrojerdi, and K. Kalhor, “Experimental investigation and modeling of thermal conductivity of CuO–water/EG nanofluid by FFBP-ANN and multiple regressions,” J. Therm. Anal. Calorim., vol. 129, no. 2, pp. 629–637, 2017. DOI: 10.1007/s10973-017-6217-4.
  • M. R. Esfahani, E. M. Languri, and M. R. Nunna, “Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid,” Int. Commun. Heat Mass Transf., vol. 76, pp. 308–315, 2016. DOI: 10.1016/J.ICHEATMASSTRANSFER.2016.06.006.
  • C. H. Li and G. P. Peterson, “The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids,” J. Appl. Phys., vol. 101, no. 4, p. 044312, 2007. DOI: 10.1063/1.2436472.
  • M. H. Ahmadi, M. A. Ahmadi, M. A. Nazari, O. Mahian, and R. Ghasempour, “A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach,” J. Therm. Anal. Calorim., pp. 1–11, 2018. DOI: 10.1007/s10973-018-7035-z.
  • M. H. Ahmadi et al., “Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 541, pp. 154–164, 2018. DOI: 10.1016/J.COLSURFA.2018.01.030.
  • M. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences,” Atmos. Environ., vol. 32, no. 14–15, pp. 2627–2636, 1998. DOI: 10.1016/S1352-2310(97)00447-0.
  • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp. 359–366, 1989. DOI: 10.1016/0893-6080(89)90020-8.
  • U. Orhan, M. Hekim, and M. Ozer, “EEG signals classification using the K-means clustering and a multilayer perceptron neural network model,” Expert Syst. Appl., vol. 38, no. 10, pp. 13475–13481, 2011. DOI: 10.1016/J.ESWA.2011.04.149.
  • D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, “The multilayer perceptron as an approximation to a Bayes optimal discriminant function,” IEEE Trans. Neural Netw., vol. 1, no. 4, pp. 296–298, 1990. DOI: 10.1109/72.80266.
  • E. Vanzella et al., “Photometric redshifts with the multilayer perceptron neural network: application to the HDF-S and SDSS,” A&A, vol. 423, no. 2, pp. 761–776, 2004. DOI: 10.1051/0004-6361:20040176.
  • H. M. Goda, E. M. El-M Shokir, K. A. Fattah, and M. H. Sayyouh, “Prediction of the PVT data using neural network computing theory,” Niger. Annu. Int. Conf. Exhib., Society of Petroleum Engineers, 2003. DOI: 10.2118/85650-MS.
  • N. Sundararajan, P. Saratchandran, and Y. W. Lu, Radial Basis Function Neural Networks with Sequential Learning: MRAN and Its Applications. Singapore: World Scientific, 1999.
  • T. Sayahi, A. Tatar, and M. Bahrami, “A RBF model for predicting the pool boiling behavior of nanofluids over a horizontal rod heater,” Int. J. Therm. Sci., vol. 99, pp. 180–194, 2016. DOI: 10.1016/J.IJTHERMALSCI.2015.08.010.
  • A. Tatar et al., “Prediction of carbon dioxide solubility in aqueous mixture of methyldiethanolamine and N-methylpyrrolidone using intelligent models,” Int. J. Greenh. Gas Control, vol. 47, pp. 122–136, 2016. DOI: 10.1016/J.IJGGC.2016.01.048.
  • J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, 1991. DOI: 10.1162/neco.1991.3.2.246.
  • A. G. Bors, “Introduction to the radial basis function (RBF) networks,” Online Symp. Electron. Eng., 2001.
  • S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302–309, 1991. DOI: 10.1109/72.80341.
  • A. Tatar et al., “Implementing radial basis function neural network for prediction of surfactant retention in petroleum production and processing industries,” Pet. Sci. Technol., vol. 34, no. 11–12, pp. 992–999, 2016. DOI: 10.1080/10916466.2016.1177548.
  • A. Tatar et al., “Implementing radial basis function neural networks for prediction of saturation pressure of crude oils,” Pet. Sci. Technol., vol. 34, no. 5, pp. 454–463, 2016. DOI: 10.1080/10916466.2016.1141217.
  • C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995. DOI: 10.1007/BF00994018.
  • E. D. Übeyli, “Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals,” Expert Syst. Appl., vol. 37, no. 1, pp. 233–239, 2010. DOI: 10.1016/J.ESWA.2009.05.012.
  • T. van Gestel et al., “Benchmarking least squares support vector machine classifiers,” Mach. Learn., vol. 54, no. 1, pp. 5–32, 2004. DOI: 10.1023/B:MACH.0000008082.80494.e0.
  • K. Pelckmans et al., LS-SVMlab: a MATLAB/C toolbox for least squares support vector machines, 2002.
  • A. Hemmati-Sarapardeh et al., “Reservoir oil viscosity determination using a rigorous approach,” Fuel, vol. 116, pp. 39–48, 2014. DOI: 10.1016/J.FUEL.2013.07.072.
  • J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Scientific, 2002. DOI: 10.1142/5089.
  • H. Wang and D. Hu, Comparison of SVM and LS-SVM for Regression. 2005 Int. Conf. Neural Networks Brain, vol.1, IEEE; n.d., p. 279–83. DOI: 10.1109/ICNNB.2005.1614615.+++
  • S. Rafiee-Taghanaki et al., “Implementation of SVM framework to estimate PVT properties of reservoir oil,” Fluid Phase Equilib., vol. 346, pp. 25–32, 2013. DOI: 10.1016/J.FLUID.2013.02.012.
  • M. H. Esfe, A. Tatar, M. R. H. Ahangar, and H. Rostamian, “A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant,” Physica E: Low-Dimens. Syst. Nanostruct., vol. 96, pp. 85–93, 2018.
  • T. Van Gestel et al., “Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis,” Neural Comput., vol. 14, no. 5, pp. 1115–1147, 2002. DOI: 10.1162/089976602753633411.
  • A. Najafi-Marghmaleki, A. Barati-Harooni, A. Tatar, A. Mohebbi, and A. H. Mohammadi, “On the prediction of Watson characterization factor of hydrocarbons,” J. Mol. Liq., vol. 231, pp. 419–429, 2017. DOI: 10.1016/J.MOLLIQ.2017.01.098.
  • H. Shayeghi and A. Ghasemi, “Day-ahead electricity prices forecasting by a modified CGSA technique and hybrid WT in LSSVM based scheme,” Energy Convers. Manag., vol. 74, pp. 482–491, 2013. DOI: 10.1016/J.ENCONMAN.2013.07.013.
  • Y.-K. Chan and Y.-C. Tsai, “Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant,” Kerntechnik, vol. 82, no. 1, pp. 24–30, 2017. DOI: 10.3139/124.110647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.