Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 1
3,031
Views
4
CrossRef citations to date
0
Altmetric
Articles

Heat transfer and pressure drop correlations for laminar flow in an in-line and staggered array of circular cylinders

ORCID Icon, &
Pages 1-20 | Received 17 Sep 2018, Accepted 19 Dec 2018, Published online: 01 Mar 2019

References

  • J. M. P. Q. Delgado, and H. a. Mass, Transfer in Porous Media. Berlin, Heidelberg: Springer-Verlag, 2012.
  • C. Hutter, D. Büchi, V. Zuber, and P. Rudolf von Rohr, “Heat transfer in metal foams and designed porous media,” Chem. Eng. Sci., vol. 66, no. 17, pp. 3806–3814, 2011. DOI: 10.1016/j.ces.2011.05.005.
  • K.-J. Kang, “Wire-woven cellular metals: The present and future,” Prog. Mater. Sci., vol. 69, pp. 213–307, 2015. DOI: 10.1016/j.pmatsci.2014.11.003.
  • J. Tian et al., “The effects of topology upon fluid-flow and heat-transfer within cellular copper structures,” Int. J. Heat Mass Transfer, vol. 47, no. 14–16, pp. 3171–3186, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.02.010.
  • K. Boomsma, D. Poulikakos, and F. Zwick, “Metal foams as compact high performance heat exchangers,” Mech. Mater., vol. 35, no. 12, pp. 1161–1176, 2003. DOI: 10.1016/j.mechmat.2003.02.001.
  • D. Girlich, Grundsatzuntersuchungen Zum Einsatz Offenporiger Metallschäume in Der Luft-, Kälte- und Wärmetechnik. Lindenberg: Abschlussbericht, M-Pore GmbH, 2006.
  • C. Marques, and K. W. Kelly, “Fabrication and performance of a pin fin micro heat exchanger,” J. Heat Transfer, vol. 126, no. 3, pp. 434–444, 2004. DOI: 10.1115/1.1731341.
  • D. J. Sypeck, and H. N. G. Wadley, “Multifunctional microtruss laminates: Textile synthesis and properties,” J. Mater. Res., vol. 16, no. 03, pp. 890–897, 2001. DOI: 10.1557/JMR.2001.0117.
  • I. Kotcioglu, G. Omeroglu, and S. Caliskan, “Thermal performance and pressure drop of different pin-fin geometries,” Hittite J. Sci. Eng., vol. 1, pp. 13–20, 2014. DOI: 10.17350/HJSE19030000003.
  • N. Sahiti, A. Lemouedda, D. Stojkovic, F. Durst, and E. Franz, “Performance comparison of pin fin in-duct flow arrays with various pin cross-sections,” Appl. Therm. Eng., vol. 26, no. 11–12, pp. 1176–1192, 2006. DOI: 10.1016/j.applthermaleng.2005.10.042.
  • R. K. Shah, and D. P. Sekulić, Fundamentals of Heat Exchanger Design, 1st ed. Hoboken, NJ: John Wiley & Sons, 2003.
  • Y. Liu, G. Xu, X. Luo, H. Li, and J. Ma, “An experimental investigation on fluid flow and heat transfer characteristics of sintered woven wire mesh structures” Therm. Eng., vol. 80, pp. 118–126, 2015. DOI: 10.1016/j.applthermaleng.2015.01.050.
  • J. Xu, J. Tian, T. J. Lu, and H. P. Hodson, “On the thermal performance of wire-screen meshes as heat exchanger material,” Int. J. Heat Mass Transfer, vol. 50, no. 5–6, pp. 1141–1154, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.05.044.
  • S. B. Prasad, J. S. Saini, and K. M. Singh, “Investigation of heat transfer and friction characteristics of packed bed solar air heater using wire mesh as packing material,” Sol. Energy, vol. 83, no. 5, pp. 773–783, 2009. DOI: 10.1016/j.solener.2008.11.011.
  • C. Li, and R. A. Wirtz, Development of a High Performance Heat Sink Based on Screen-Fin Technology. Reno, NV: University of Nevada, 2003.
  • E. van Andel, Heat exchanger and method for manufacturing same, Patent EP0714500 B1, 1996.
  • J. P. Bonestroo, “Calculation model of fine-wire heat exchanger,” Master Thesis, Twente University, Enschede, Netherlands, 2012.
  • H. Fugmann, P. D. Lauro, and L. Schnabel, Heat Transfer Surface Area Enlargement by Usage of Metal Textile Structures – Development, Potential and Evaluation. Dresden: International Textile Conference, 2016. DOI: 10.3390/en10091341.
  • N. Sahiti, “Thermal and fluid dynamic performance of pin fin heat transfer surfaces,” PhD Thesis, Friedrich-Alexander Universität, Erlangen-Nürnberg, 2006.
  • H. Fugmann, E. Laurenz, and L. Schnabel, “Wire structure heat exchangers—New designs for efficient heat transfer,” Energies, vol. 10, pp. 1341, 2017.
  • H. Fugmann, P. Di Lauro, A. Sawant, and L. Schnabel, “Development of heat transfer surface area enhancements: A test facility for new heat exchanger designs,” Energies, vol. 11, no. 5, pp. 1322, 2018. DOI: 10.3390/en11051322.
  • MinWaterCSP Project, Cooling Systems: Wire structure heat transfer surfaces. MinWaterCSP consortium. Available: https://www.minwatercsp.eu/technologies/cooling-systems/.
  • I. Verein Deutscher, Wärmeatlas, 9th ed. Berlin & Heidelberg: Springer-Verlag, 2002.
  • P. von Böckh, and T. Wetzel, Heat Transfer. Berlin, Heidelberg: Springer, 2012.
  • R. K. Shah, and A. L. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. New York: Academic Press, 1978.
  • H. Fugmann, S. Gamisch, and L. Schnabel, Efficiency of Micro Pin Fin Heat Exchangers with Non-Uniform Temperature Profile of Ambient Fluid, submitted, August 2018.
  • I. B. Celik, U. Ghia, P. J. Roache, C. J. Freitas, H. Coleman, and P. E. Raad, “Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications,” J. Fluids Eng., vol. 130, pp. 078001 (1–4) 2008. DOI: 10.1115/1.2960953.
  • V. Gnielinski, “Gleichungen zur berechnung des wärmeübergangs in querdurchströmten einzelnen rohrreihen und rohrbündeln,” Forsch Ing-Wes, vol. 44, no. 1, pp. 15–25, 1978. DOI: 10.1007/BF02560750.
  • H. N. Fairchild, and C. P. Welch, “Convection heat transfer and pressure drop of air flowing across in-line tube banks at close back spacings,” ASME Annual Meeting, New York, NY, 1961.
  • B. Zohuri, Compact Heat Exchangers: Selection, Application, Design and Evaluation, 1st ed. Switzerland: Springer International Publishing, 2017.