Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 1
230
Views
9
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis of an evaporating thin film region: Enticing influence of nanofluid

& ORCID Icon
Pages 56-70 | Received 05 Oct 2018, Accepted 19 Dec 2018, Published online: 06 Feb 2019

References

  • P. C. Wayner, Jr., “Fluid flow in the interline region of an evaporating non-zero contact angle meniscus,” Int. J. Heat Mass Transfer, vol. 16, no. 9, pp. 1777–1783, 1973.
  • J. G. Troung and P. C. Wayner, Jr., “Effects of capillary and Van der Waals dispersion forces on the equilibrium profile of a wetting liquid: theory and experiment,” J. Chem. Phys., vol. 87, pp. 4180–4188, 1987.
  • F. W. Holm and S. P. Goplen, “Heat transfer in the meniscus thin-film transition region,” J. Heat Transfer, vol. 101, pp. 498–503, 1979.
  • B. V. Derjaguin, “Modern state of the investigation of long-range surface forces,” Langmuir, vol. 3, no. 5, pp. 601–606, 1987.
  • R. W. Schrage, A Theoretical Study of Interphase Mass Transfer. New York: Columbia University Press, 1953.
  • M. Potash, Jr., and P. C. Wayner, Jr., “Evaporation from a two-dimensional extended meniscus,” Int. J. Heat Mass Transfer, vol. 15, no. 10, pp. 1851–1863, 1972.
  • P. C. Wayner, Jr., Y. K. Kao, and L. V. LaCroix, “The interline heat transfer coefficient of an evaporating wetting film,” Int. J. Heat Mass Transfer, vol. 19, pp. 48–492, 1976.
  • J. A. Schonberg and P. C. Wayner, Jr., “Analytical solution for the integral contact line evaporative heat sink,” J. Thermophys. Heat Transfer, vol. 6, no. 1, pp. 128–134, 1992.
  • X. Xu and V. P. Carey, “Film evaporation from a micro-grooved surface – an approximate heat transfer model and its comparison with experimental data,” J. Thermophys. Heat Transfer, vol. 4, no. 4, pp. 512–520, 1990.
  • H. B. Ma and G. P. Peterson, “Temperature variation and heat transfer in triangular grooves with an evaporating film,” J. Thermophys. Heat Transfer, vol. 11, pp. 90–97, 1997.
  • K. Park, K. J. Noh, and K. S. Lee, “Transport phenomena in the thin-film region of a micro-channel,” Int. J. Heat Mass Transfer, vol. 46, no. 13, pp. 2381–2388, 2003.
  • C. Yan and H. B. Ma, “Analytical solutions of heat transfer and film thickness in thin-film evaporation,” J. Heat Transfer, vol. 135, no. 3, pp. 031501–031506, 2013.
  • J. M. Ha and G. P. Peterson, “The interline heat transfer of evaporating thin films along a micro grooved surface,” J. Heat Transfer, vol. 118, no. 3, pp. 747–755, 1996.
  • K. P. Hallinan, H. C. Chebaro, S. J. Kim, and W. S. Chang, “Evaporation from an extended meniscus for non-isothermal interfacial conditions,” J. Thermophys. Heat Transfer, vol. 8, no. 4, pp. 709–716, 1994.
  • J. A. Schonberg, S. DasGupta, and P. C. Wayner, Jr., “An augmented Young-Laplace model of an evaporating meniscus in a microchannel with high heat flux,” Exp. Therm. Fluid. Sci., vol. 10, no. 2, pp. 163–170, 1995.
  • S. D. Gupta, J. A. Schonberg, and P. C. Wayner, Jr., “Investigation of an evaporating extended meniscus based on the augmented Young-Laplace equation,” J. Heat Transfer, vol. 115, pp. 201–208, 1993.
  • H. H. Sait and H. B. Ma, “An experimental investigation of thin-film evaporation,” Nanoscale Microscale Thermophys. Eng., vol. 13, no. 4, pp. 218–227, 2009.
  • S. Narayanan, A. G. Fedorov, and Y. K. Joshi, “Gas-assisted thin-film evaporation from confined spaces for dissipation of high heat fluxes,” Nanos. Micros. Thermophys. Eng, vol. 13, no. 1, pp. 30–53, 2009.
  • H. Hu and Y. Sun, “Effect of nanostructures on heat transfer coefficient of an evaporating meniscus,” Int. J. Heat Mass Transfer, vol. 101, pp. 878–885, 2016.
  • R. Mandel, A. Shooshtari, and M. Ohadi, “Thin-Film evaporation on microgrooved heatsinks,” Numer. Heat Transfer A: Appl., vol. 71, no. 2, pp. 111–127, 2017.
  • B. Fu, N. Zhao, B. Tian, W. Corey, and H. Ma, “Evaporation heat transfer in thin-film region with bulk vapor flow effect,” J. Heat Transfer, vol. 140, no. 1, pp. 011502–011508, 2017.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” J. Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Mass Transfer, vol. 21, pp. 58–64, 2000.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” in D.A. Singer and H.P. Wang (eds.), Development and Applications of Non-Newtonian Flows, FED. vol. 231/MD-vol.66, New York: ASME, pp. 1 15 1995.
  • P. K. Singh, P. V. Harikrishna, T. Sundararajan, and S. K. Das, “Experimental and numerical investigation into the heat transfer study of nanofluids in microchannel,” J. Heat Transfer, vol. 133, no. 12, pp. 121701–121709, 2011.
  • I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a Pool,” Int. J. Heat Mass Transfer, vol. 48, no. 12, pp. 2407–2419, 2005.
  • J. Fan and L. Wang, “Review of heat conduction in nanofluids,” J. Heat Transfer, vol. 133, no. 4, pp. 040801–040814, 2011.
  • K. S. Hwang, S. P. Jang, and S. U. S. Choi, “Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime,” Int. J. Heat Mass Transfer, vol. 52, no. 1-2, pp. 193–199, 2009.
  • P. D. Shima, J. Philip, and B. Raj, “Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids,” Appl. Phys. Lett., vol. 94, no. 22, pp. 223101, 2009.
  • S. Ozerinc, S. Kakac, and A. G. Yazicioglu, “Enhanced thermal conductivity of nanofluids: a state-of-the-art review,” Microfluid Nanofluid., vol. 8, pp. 145–170, 2010.
  • L. M. Poplaski, S. P. Benn, and A. Faghri, “Thermal performance of heat pipes using nanofluids,” Int. J. Heat Mass Transfer, vol. 107, pp. 358–371, 2017.
  • K. H. Do and S. P. Jang, “Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick,” Int. J. Heat Mass Transfer, vol. 53, no. 9-10, pp. 2183–2192, 2010.
  • J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, “Effect of nanofluids on thin film evaporation in microchannels,” J. Nanopart. Res., vol. 13, no. 10, pp. 5033–5047, 2011.
  • H. Wang, S. V. Garimella, and J. Y. Murthy, “Characteristics of an evaporating thin film in a microchannel,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 3933–3942, 2007.
  • M. S. Hanchak, M. D. Vangsness, L. W. Byrd, and J. S. Ervin, “Thin film evaporation of n-octane on silicon: experiments and theory,” Int. J. Heat Mass Transfer, vol. 75, pp. 196–206, 2014.
  • M. S. Hanchak, M. D. Vangsness, J. S. Ervin, and L. W. Byrd, “Model and experiments of the transient evolution of a thin, evaporating liquid film,” Int. J. Heat Mass Transfer, vol. 92, pp. 757–765, 2016.
  • C. Guo, X. Hu, W. Cao, D. Yu, and D. Tang, “Effect of mechanical vibration on flow and heat transfer characteristics in rectangular microgrooves,” Appl. Therm. Eng., vol. 52, no. 2, pp. 385–393, 2013.
  • H. B. Ma, P. Cheng, B. Borgmeyer, and Y. X. Wang, “Fluid flow and heat transfer in the evaporating thin film region,” Microfluid. Nanofluid., vol. 4, no. 3, pp. 237–243, 2008.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” J. Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003.
  • W. Yu and S. U. S. Choi, “The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model,” J. Nanopart. Res., vol. 5, no. 1/2, pp. 167–171, 2004. no.
  • S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett., vol. 84, no. 21, pp. 4316–4318, 2004.
  • G. Chen, “Nonlocal and non equilibrium heat conduction in the vicinity of nanoparticles,” J. Heat Transfer, vol. 118, no. 3, pp. 539–545, 1996.
  • P. K. Singh, K. B. Anoop, T. Sundararajan, and S. K. Das, “Entropy generation due to flow and heat transfer in nanofluids,” Int. J. Heat Mass Transfer., vol. 53, no. 21-22, pp. 4757–4767, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.