Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 3
793
Views
84
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of compressible flows by lattice Boltzmann method

ORCID Icon
Pages 167-182 | Received 29 Oct 2018, Accepted 04 Feb 2019, Published online: 18 Mar 2019

References

  • R. Sadeghi and M.H. Rahimian, “Simulation of bubble sonoluminescing phenomena with lattice Boltzmann method,” Modares Mech. Eng., vol. 15, pp. 383–391, 2015.
  • G. Li, M. Aktas, and Y. Bayazitoglu, “A review on the discrete Boltzmann model for nanofluid heat transfer in enclosures and channels,” Numer. Heat Transf. B: Fundament, vol. 67, no. 6, pp. 463–488, 2015. DOI: 10.1080/10407790.2014.992089.
  • M. Hussain and W.-Q. Tao, “Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method,” Numer. Heat Transf. A Appl., vol. 74, no. 6, pp. 1–16, 2018.
  • A. Tarokh, A. Mohamad, and L. Jiang, “Simulation of conjugate heat transfer using the lattice Boltzmann method,” Numer. Heat Transf. A Appl., vol. 63, no. 3, pp. 159–178, 2013. DOI: 10.1080/10407782.2012.725009.
  • V. Abdollahi and A. Nejat, “Compressible fluid flow simulation using finite difference lattice Boltzmann method,” in ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, pp. 7–16, 2010.
  • R. Sadeghi, M.S. Shadloo, and K. Hooman, “Numerical investigation of the natural convection film boiling around elliptical tubes,” Numer. Heat Transf. A Appl., vol. 70, no. 7, pp. 707–722, 2016. DOI: 10.1080/10407782.2016.1214484.
  • L. Yang, C. Shu, and J. Wu, “A moment conservation-based non-free parameter compressible lattice boltzmann model and its application for flux evaluation at cell interface,” Comput. Fluids, vol. 79, pp. 190–199, 2013. DOI: 10.1016/j.compfluid.2013.03.020.
  • H. Huang, M. Sukop, and X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application. West Sussex: John Wiley & Sons, 2015.
  • R. Sadeghi, M. Safdari Shadloo, M.Y. Abdollahzadeh Jamalabadi, and A. Karimipour, “A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in Pool boiling,” Int. Commun. Heat Mass Transf., vol. 79, pp. 58–66, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.10.009.
  • R. Sadeghi and M. Shadloo, “Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method,” Numer. Heat Transf. A Appl., vol. 71, no. 5, pp. 560–574, 2017. DOI: 10.1080/10407782.2016.1277936.
  • D. Thorne and C. Michael, Lattice Boltzmann Modeling. An Introduction for Geoscientists and Engineers, 2nd ed. New York: Springer, 2006.
  • M.R. Safaei, A. Karimipour, A. Abdollahi, and T.K. Nguyen, “The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method,” Phys. A Stat. Mech. Appl., vol. 509, pp. 515–535, 2018. DOI: 10.1016/j.physa.2018.06.034.
  • M. Goodarzi, A. D’Orazio, A. Keshavarzi, S. Mousavi, and A. Karimipour, “Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: Pure natural convection & mixed convection,” Phys. A Stat. Mech. Appl., vol. 509, pp. 210–233, 2018.
  • R. Sadeghi, M. Shadloo, M. Hopp-Hirschler, A. Hadjadj, and U. Nieken, “Three-dimensional lattice Boltzmann simulations of high density ratio two-phase flows in porous media,” Comput. Math. Appl., vol. 75, no. 7, pp. 2445–2465, 2018.
  • C. Feng, X. Ai-Guo, Z. Guang-Cai, and L. Ying-Jun, “Three-dimensional lattice Boltzmann model for high-speed compressible flows,” Commun. Theor. Phys., vol. 54, pp. 1121, 2010.
  • F.J. Alexander, S. Chen, and J. Sterling, “Lattice Boltzmann thermohydrodynamics,” Phys. Rev. E, vol. 47, no. 4, pp. R2249, 1993. DOI: 10.1103/PhysRevE.47.R2249.
  • Y. Guangwu, C. Yaosong, and H. Shouxin, “Simple lattice Boltzmann model for simulating flows with shock wave,” Phys. Rev. E, vol. 59, no. 1, pp. 454, 1999. DOI: 10.1103/PhysRevE.59.454.
  • W. Shi, W. Shyy, and R. Mei, “Finite-difference-based lattice Boltzmann method for inviscid compressible flows,” Numer. Heat Transf. B Fundament., vol. 40, pp. 1–21, 2001.
  • T. Kataoka and M. Tsutahara, “Lattice Boltzmann method for the compressible Euler equations,” Phys. Rev. E, vol. 69, pp. 056702, 2004.
  • M. Watari and M. Tsutahara, “Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy,” Phys. Rev. E, vol. 67, pp. 036306, 2003.
  • M. Watari, “Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations,” Phys. A Stat. Mech. Appl., vol. 382, no. 2, pp. 502–522, 2007. DOI: 10.1016/j.physa.2007.03.037.
  • Q. Li, Y. He, Y. Wang, and G. Tang, “Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows,” Phys. Lett. A, vol. 373, no. 25, pp. 2101–2108, 2009. DOI: 10.1016/j.physleta.2009.04.036.
  • X. Pan, A. Xu, G. Zhang, and S. Jiang, “Lattice Boltzmann approach to high-speed compressible flows,” Int. J. Modern Phys. C, vol. 18, no. 11, pp. 1747–1764, 2007. DOI: 10.1142/S0129183107011716.
  • T. Kataoka and M. Tsutahara, “Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio,” Phys. Rev. E, vol. 69, pp. 035701, 2004.
  • M. Shadloo and A. Hadjadj, “Laminar-turbulent transition in supersonic boundary layers with surface heat transfer: A numerical study,” Numer. Heat Transf. A Appl., vol. 72, no. 1, pp. 40–53, 2017. DOI: 10.1080/10407782.2017.1353380.
  • S. Sharma, M. Shadloo, and A. Hadjadj, “Laminar-to-turbulent transition in supersonic boundary layer: Effects of initial perturbation and wall heat transfer,” Numer. Heat Transf. A Appl., vol. 73, no. 9, pp. 1–21, 2018.
  • P.L. Bhatnagar, E.P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev., vol. 94, no. 3, pp. 511, 1954. DOI: 10.1103/PhysRev.94.511.
  • C. Feng, X. Ai-Guo, Z. Guang-Cai, G. Yan-Biao, C. Tao, and L. Ying-Jun, “Highly efficient lattice Boltzmann model for compressible fluids: Two-dimensional case,” Commun. Theor. Phys., vol. 52, no. 4, pp. 681, 2009. DOI: 10.1088/0253-6102/52/4/25.
  • Y. Gan, A. Xu, G. Zhang, X. Yu, and Y. Li, “Two-dimensional lattice Boltzmann model for compressible flows with high Mach number,” Phys. A Stat. Mech. Appl., vol. 387, no. 8–9, pp. 1721–1732, 2008. DOI: 10.1016/j.physa.2007.11.013.
  • http://amroc.sourceforge.net/examples/euler/2d/html/shbubble_n.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.