Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 3
1,225
Views
16
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system

, , , , &
Pages 183-199 | Received 03 Nov 2018, Accepted 06 Feb 2019, Published online: 18 Mar 2019

References

  • Z. Chen, C. C. Mi, B. Xia, and C. You, “Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle,” J. Power Sources, vol. 272, pp. 160–168, 2014. DOI: 10.1016/j.jpowsour.2014.08.057.
  • Y. Zheng, L. Lu, X. Han, J. Li, and M. Ouyang, “LiFePO4 battery pack capacity estimation for electric vehicles based on charging cell voltage curve transformation,” J. Power Sources, vol. 226, pp. 33–41, 2013. DOI: 10.1016/j.jpowsour.2012.10.057.
  • K. Amine et al., “Nanostructured anode material for high-power battery system in electric vehicles,” Adv. Mater., vol. 22, no. 28, pp. 3052–3057, 2010. DOI: 10.1002/adma.201000441.
  • A. A. Pesaran, “Battery thermal management in EVs and HEVs: Issues and solutions,” in Advanced Automotive Battery Conference. Las Vegas, Nevada, 2011.
  • S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, “Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions,” Appl. Therm. Eng., vol. 96, pp. 190–199, 2016. DOI: 10.1016/j.applthermaleng.2015.11.019.
  • J. Smith, M. Hinterberger, C. Schneider, and J. Koehler, “Energy savings and increased electric vehicle range through improved battery thermal management,” Appl. Therm. Eng., vol. 101, pp. 647–656, 2016. DOI: 10.1016/j.applthermaleng.2015.12.034.
  • T. M. Bandhauer, S. Garimella, and T. F. Fuller, “A critical review of thermal issues in lithium-ion batteries,” J. Electrochem. Soc., vol. 158, pp. 1–25, 2011.
  • Q. S. Wang, P. Ping, X. J. Zhao, G. Q. Chu, J. H. Sun, and C. H. Chen, “Thermal runaway caused fire and explosion of lithium ion battery,” J. Power Sources, vol. 208, pp. 210–224, 2012.
  • D. Lisbona and T. Snee, “A review of hazards associated with primary lithium and lithium-ion batteries,” Process Saf. Environ. Prot., vol. 89, no. 6, pp. 434–442, 2011. DOI: 10.1016/j.psep.2011.06.022.
  • X. Feng et al., “Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry,” J. Power Sources, vol. 255, pp. 294–301, 2014. DOI: 10.1016/j.jpowsour.2014.01.005.
  • L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” J. Power Sources, vol. 226, pp. 272–288, 2013. DOI: 10.1016/j.jpowsour.2012.10.060.
  • M. Richard and J. Dahn, “Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental,” J. Electrochem. Soc., vol. 146, no. 6, pp. 2068–2077, 1999. DOI: 10.1149/1.1391893.
  • R. Spotnitz and J. Franklin, “Abuse behavior of high-power, lithium-ion cells,” J. Power Sources, vol. 113, no. 1, pp. 81–100, 2003. DOI: 10.1016/S0378-7753(02)00488-3.
  • G. Venugopal, “Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries,” J. Power Sources, vol. 101, no. 2, pp. 231–237, 2001. DOI: 10.1016/S0378-7753(01)00782-0.
  • D. Abraham, E. Roth, R. Kostecki, K. McCarthy, S. MacLaren, and D. Doughty, “Diagnostic examination of thermally abused high-power lithium-ion cells,” J. Power Sources, vol. 161, no. 1, pp. 648–657, 2006. DOI: 10.1016/j.jpowsour.2006.04.088.
  • S. Zheng, L. Wang, X. Feng, and X. He, “Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries,” J. Power Sources, vol. 378, pp. 527–536, 2018. DOI: 10.1016/j.jpowsour.2017.12.050.
  • S. Tobishima and J. Yamaki, “A consideration of lithium cell safety,” J. Power Sources, vol. 81, pp. 882–886, 1999. DOI: 10.1016/S0378-7753(98)00240-7.
  • X. N. Feng et al., “Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module,” J. Power Sources, vol. 275, pp. 261–273, 2015. DOI: 10.1016/j.jpowsour.2014.11.017.
  • X. Feng et al., “Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNixCoyMnzO2 large format lithium ion battery,” Appl. Energy, vol. 154, pp. 74–91, 2015. DOI: 10.1016/j.apenergy.2015.04.118.
  • J. Ye, et al., “Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions,” Appl. Energy, vol. 182, pp. 464–474, 2016. DOI: 10.1016/j.apenergy.2016.08.124.
  • F. Larsson, P. Andersson, P. Blomqvist, A. Lorén, and B. E. Mellander, “Characteristics of lithium-ion batteries during fire tests,” J. Power Sources, vol. 271, pp. 414–420, 2014. DOI: 10.1016/j.jpowsour.2014.08.027.
  • T. D. Hatchard, D. D. MacNeil, A. Basu, and J. R. Dahn, “Thermal model of cylindrical and prismatic lithium-ion cells,” J. Electrochem. Soc., vol. 148, pp. 755–761, 2001.
  • G. H. Kim, A. Pesaran, and R. Spotnitz, “A three-dimensional thermal abuse model for lithium-ion cells,” J. Power Sources, vol. 170, no. 2, pp. 476–489, 2007. DOI: 10.1016/j.jpowsour.2007.04.018.
  • W. Zhao, G. Luo, and C. Y. Wang, “Modeling nail penetration process in large-format Li-ion cells,” J. Electrochem. Soc., vol. 162, pp. 207–217, 2015.
  • C. Yang, G. H. Kim, S. Santhanagopalan, and A. Pesaran, “Multi-physics modeling of thermal runaway propagation in a Li-ion battery module,” in 225th ECS Meeting. Orlando, FL, 2014.
  • M. Chen et al., “A thermal runaway simulation on a lithium titanate battery and the battery module,” Energies, vol. 8, no. 1, pp. 490–500, 2015. DOI: 10.3390/en8010490.
  • J. Xu, C. Lan, Y. Qiao, and Y. Ma, “Prevent thermal runaway of lithium-ion batteries with minichannel cooling,” Appl. Therm. Eng., vol. 110, pp. 883–890, 2017. DOI: 10.1016/j.applthermaleng.2016.08.151.
  • K. W. Chen and X. G. Li, “Accurate determination of battery discharge characteristics – A comparison between two battery temperature control methods,” J. Power Sources, vol. 247, pp. 961–966, 2014. DOI: 10.1016/j.jpowsour.2013.09.060.
  • M. R. Giuliano, A. K. Prasad, and S. G. Advani, “Experimental study of an air-cooled thermal management system,” J. Power Sources, vol. 216, pp. 345–352, 2012. DOI: 10.1016/j.jpowsour.2012.05.074.
  • L. Cao, G. Xia, T. Li, and J. Wang, “Thermal characteristics of battery module with trapezoidal structure,” Numerical Heat Transfer, Part A: Appl., vol. 74, no. 11, pp. 1701–1714, 2018. DOI: 10.1080/10407782.2018.1517553.
  • L. W. Fan, J. M. Khodadadi, and A. A. Pesaran, “A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles,” J. Power Sources, vol. 238, pp. 301–312, 2013. DOI: 10.1016/j.jpowsour.2013.03.050.
  • A. Mills and S. Al-Hallaj, “Simulation of passive thermal management system for lithium-ion battery packs,” J. Power Sources, vol. 141, no. 2, pp. 307–315, 2005. DOI: 10.1016/j.jpowsour.2004.09.025.
  • J. F. Maddox, R. W. Knight, and S. H. Bhavnani, “Non-uniform thermal properties of an alumina granule/epoxy potting compound”, in 12th IEEE Intersociety Conf. on Therm. and Thermomech. Phenom in Electronic Systems, 2010.
  • B. Fadhl, L. C. Wrobel, and H. Jouhara, “Numerical modelling of the temperature distribution in a two-phase closed thermosyphon,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 122–131, 2013. DOI: 10.1016/j.applthermaleng.2013.06.044.
  • N. Ghanta and A. Pattamatta, “Modeling of compressible phase-change heat transfer in a Taylor-Bubble with application to pulsating heat pipe (PHP),” Numerical Heat Transfer, Part A: Appl., vol. 69, pp. 1355–1375, 2016. DOI: 10.1080/10407782.2016.1139980.
  • X. Chen, F. Tavakkoli, and K. Vafai, “Analysis and characterization of metal foam-filled double- pipe heat exchangers,” Numerical Heat Transfer, Part A: Appl., vol. 68, no. 10, pp. 1031–1049, 2015. DOI: 10.1080/10407782.2015.1031607.
  • Z. H. Rao, S. F. Wang, M. C. Wu, Z. R. Lin, and F. H. Li, “Experimental investigation on thermal management of electric vehicle battery with heat pipe,” Energ. Convers. Manage, vol. 65, pp. 92–97, 2013. DOI: 10.1016/j.enconman.2012.08.014.
  • Z. H. Rao, Y. T. Huo, and X. J. Liu, “Experimental study of an OHP-cooled thermal management system for electric vehicle power battery,” Exp. Therm. Fluid Sci., vol. 57, pp. 20–26, 2014. DOI: 10.1016/j.expthermflusci.2014.03.017.
  • Q. Wang et al., “Experimental investigation on EV battery cooling and heating by heat pipes,” Appl. Therm. Eng., vol. 88, pp. 54–60, 2015. DOI: 10.1016/j.applthermaleng.2014.09.083.
  • Y. H. Ye, Y. X. Shi, L. H. Saw, and A. A. O. Tay, “Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs,” Int. J. Heat. Mass Transfer., vol. 92, pp. 893–903, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.052.
  • F. Liu, F. Lan, and J. Chen, “Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling,” J. Power Sources, vol. 321, pp. 57–70, 2016. DOI: 10.1016/j.jpowsour.2016.04.108.
  • C. L. Yeh, C. Y. Wen, Y. F. Chen, S. H. Yeh, and C. H. Wu, “An experimental investigation of thermal contact conductance across bolted joints,” Exp. Therm. Fluid Sci., vol. 25, no. 6, pp. 349–357, 2001. DOI: 10.1016/S0894-1777(01)00096-6.
  • S. C. K. De Schepper, G. J. Heynderickx, and G. B. Marin, “Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker,” Comput. Chem. Eng., vol. 33, pp. 122–132, 2009. DOI: 10.1016/j.compchemeng.2008.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.