Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 11
2,118
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of hole configurations on film cooling performance

, , &
Pages 725-738 | Received 28 May 2018, Accepted 11 Apr 2019, Published online: 10 Jun 2019

References

  • P. Caron and T. Khan, “Evolution of Ni-based superalloys for single crystal gas turbine blade applications,” Aerospace Sci. Technol., vol. 3, pp. 513–523, 1999. DOI: 10.1016/S1270-9638(99)00108-X.
  • D. K. Tafti, L. He, and K. Nagendra, “Large eddy simulation for predicting turbulent heat transfer in gas turbines,” Philos. Trans A Math. Phys. Eng. Sci., vol. 372, no. 2022, pp. 20130322, 2014. DOI: 10.1098/rsta.2013.0322.
  • J. C. Han and S. Ekkad, “Recent development in turbine blade film cooling,” Int. J. Rotating Mach., vol. 7, no. 1, pp. 21–40, 2001. DOI: 10.1155/S1023621X01000033.
  • B. Sundén and G. N. Xie, “Gas turbine blade tip heat transfer and cooling: A literature survey,” Heat Transf. Eng., vol. 31, pp. 527–554, 2010. DOI: 10.1080/01457630903425320.
  • K. Kusterer, D. Bohn, T. Sugimoto, and R. Tanaka, “Influence of blowing ratio on the double-jet ejection of cooling air,” presented at the ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, Canada, May 14–17, 2007, pp. 305–315.
  • A. Rozati and D. K. Tafti, “Effect of coolant–mainstream blowing ratio on leading edge film cooling flow and heat transfer–LES investigation,” Int. J. Heat Fluid Flow, vol. 29, pp. 857–873, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.02.007.
  • M. J. Benson, C. J. Elkins, S. D. Yapa, J. B. Ling, and J. K. Eaton, “Effects of varying reynolds number, blowing ratio, and internal geometry on trailing edge cutback film cooling,” Exp. Fluids, vol. 52, no. 6, pp. 1415–1430, 2012. DOI: 10.1007/s00348-012-1260-1.
  • E. Kianpour, N. A. C. Sidik, and I. Golshokouh, “Measurement of film effectiveness for cylindrical and row trenched cooling holes at different blowing ratios,” Numer. Heat Transf. A Appl., vol. 66, no. 10, pp. 1154–1171, 2014. DOI: 10.1080/10407782.2014.901042.
  • J. Wang, C. Gu, and B. Sundén, “Investigations of film cooling and its nonuniform distribution for the conjugate heat transfer passage with a compound inclined angle jet,” Numer. Heat Transf. A Appl., vol. 69, no. 1, pp. 14–30, 2016. DOI: 10.1080/10407782.2015.1023156.
  • K. Singh, B. Premachandran, M. R. Ravi, B. Suresh, and S. Vasudev, “Prediction of film cooling effectiveness over a flat plate from film heating studies,” Numer. Heat Transf. A Appl., vol. 69, no. 5, pp. 529–544, 2016. DOI: 10.1080/10407782.2015.1090232.
  • K. Singh, B. Premachandran, and M. R. Ravi, “Numerical investigation of film cooling on a 2d corrugated surface,” Numer. Heat Transf. A Appl., vol. 70, no. 11, pp. 1253–1270, 2016. DOI: 10.1080/10407782.2016.1230431.
  • S. B. Islami, S. P. A. Tabrizi, and B. A. Jubran, “Computational investigation of film cooling from trenched holes near the leading edge of a turbine blade,” Numer. Heat Transf. A Appl., vol. 53, no. 3, pp. 308–322, 2007. DOI: 10.1080/10407780701564200.
  • K. D. Lee and K. Y. Kim, “Film cooling performance of cylindrical holes embedded in a transverse trench,” Numer. Heat Transf. A Appl., vol. 65, no. 2, pp. 127–143, 2014. DOI: 10.1080/10407782.2013.826106.
  • R. S. Bunker, “A review of shaped hole turbine film-cooling technology,” J. Heat Transf., vol. 127, no. 4, pp. 441–453, 2005. DOI: 10.1115/1.1860562.
  • M. J. Ely and B. A. Jubran, “A numerical study on improving large angle film cooling performance through the use of sister holes,” Numer. Heat Transf. A Appl., vol. 55, no. 7, pp. 634–653, 2009. DOI: 10.1080/10407780902821532.
  • S. Khajehhasani and B. Jubran, “Numerical assessment of the film cooling through novel sister-shaped single-hole schemes,” Numer. Heat Transf A Appl., vol. 67, no. 4, pp. 414–435, 2015. DOI: 10.1080/10407782.2014.937257.
  • B. T. An, J. J. Liu, X. D. Zhang, S. J. Zhou, and C. Zhang, “Film cooling effectiveness measurements of a near surface streamwise diffusion hole,” Int. J. Heat Mass Transf., vol. 103, pp. 1–13, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.028.
  • S. J. Dai, Y. Xiao, L. M. He, T. Jin, and Z. C. Zhao, “Film cooling from a cylindrical hole with parallel auxiliary holes influences,” Numer. Heat Transf. A Appl., vol. 69, no. 5, pp. 497–511, 2016. DOI: 10.1080/10407782.2015.1081023.
  • Z. H. Gao, D. P. Narzary, and J. C. Han, “Film cooling on a gas turbine blade pressure side or suction side with axial shaped holes,” Int. J. Heat Mass Transf., vol. 51, pp. 2139–2152, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.010.
  • K. Mazaheri, K. C. Kiani, and M. Karimi, “Application of a modified algebraic heat-flux model and second-moment-closure to high blowing-ratio film-cooling and corrugated heat-exchanger simulations,” Appl. Therm. Eng., vol. 124, pp. 948–966, 2017. DOI: 10.1016/j.applthermaleng.2017.06.093.
  • J. Zhou, X. Wang, J. Li, and H. Lu, “CFD analysis of mist/air film cooling on a flat plate with different hole types,” Numer. Heat Transf. A Appl., vol. 71, no. 11, pp. 1123–1140, 2017. DOI: 10.1080/10407782.2017.1337994.
  • X. Li and T. Wang, “Simulation of film cooling enhancement with mist injection,” J. Heat Transf., vol. 128, no. 6, pp. 509–519, 2006. DOI: 10.1115/1.2171695.
  • D. C. Wilcox, Turbulence Modeling for CFD. La Canada, CA: DCW Industries Inc., 2006.