Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 9
110
Views
1
CrossRef citations to date
0
Altmetric
Articles

Entropy generation analysis of nanofluid forced convection in MHD plane diffuser

Pages 627-645 | Received 05 Feb 2019, Accepted 11 Apr 2019, Published online: 24 May 2019

References

  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluid,” Int. J. Heat Mass Transf., vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • A. Beheshti, M. K. Moraveji, and M. Hejazian, “Comparative numerical study of nanofluid heat transfer through an annular channel,” Numer. Heat Transf. A Appl., vol. 67, no. 1, pp. 100–117, 2015. DOI: 10.1080/10407782.2014.894359.
  • P. Ganesan, I. Behroyan, S. He, S. Sivasankaran, and S. C. Sandaran, “Turbulent forced convection of Cu–water nanofluid in a heated tube: improvement of the two-phase model,” Numer Heat Transf. A Appl., vol. 69, no. 4, pp. 401–420, 2016. DOI: 10.1080/10407782.2015.1081019.
  • C. Pang, J. W. Lee, and Y. T. Kang, “Review on combined heat and mass transfer characteristics in nanofluids,” Int. J. Therm. Sci., vol. 87, pp. 49–67, 2015. DOI: 10.1016/j.ijthermalsci.2014.07.017.
  • H. Heidary, R. Hosseini, M. Pirmohammadi, and M. J. Kermani, “Numerical study of magnetic field effect on nano-fluid forced convection in a channel,” J. Magn. Magn. Mater., vol. 374, pp. 11–17, 2015. DOI: 10.1016/j.jmmm.2014.08.001.
  • M. M. Rashidi, M. Nasiri, M. Khezerloo, and N. Laraqi, “Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls,” J. Magn. Magn. Mater., vol. 401, pp. 159–168, 2016. DOI: 10.1016/j.jmmm.2015.10.034.
  • P. K. Singh, K. B. Anoop, T. Sundararajan, and S. K. Das, “Entropy generation due to flow and heat transfer in nanofluids,” Int. J. Heat Mass Transf., vol. 53, no. 21-22, pp. 4757–4767, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.06.016.
  • O. Mahian, “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transf., vol. 65, pp. 514–532, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • W. Wang et al., “Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes,” Numer. Heat Transf. A Appl., vol. 73, no. 11, pp. 788–805, 2018. DOI: 10.1080/10407782.2018.1459137.
  • V. Bianco, O. Manca, and S. Nardini, “Entropy generation analysis of turbulent convection flow of Al2O3 nanofluid in a circular tube subjected to constant wall heat flux,” Energy Convers. Manag., vol. 77, pp. 306–314, 2014. DOI: 10.1016/j.enconman.2013.09.049.
  • S. Dutta, A. K. Biswas, and S. Pati, “Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall,” Numer. Heat Transf. A Appl., vol. 73, no. 4, pp. 222–240, 2018. DOI: 10.1080/10407782.2018.1423773.
  • M. S. Alam and M. A. H. Khan, “MHD effects on mixed convection flow through a diverging channel with circular obstacle,” Proc. Eng., vol. 90, pp. 403–410, 2014. DOI: 10.1016/j.proeng.2014.11.869.
  • G. C. Layek, S. G. Kryzhevich, A. S. Gupta, and M. Reza, “Steady magnetohydrodynamic flow in a diverging channel with suction or blowing,” Z. Angew. Math. Phys., vol. 64, no. 1, pp. 123–143, 2013. DOI: 10.1007/s00033-012-0225-9.
  • O. D. Makinde, “Steady flow in a linearly diverging asymmetrical channel,” Comput. Assist. Mech. Eng. Sci., vol. 4, pp. 157–165, 1997.
  • M. Abbaszadeh, A. Ababaei, A. A. Abbasian Arani, and A. Abbasi Sharifabadi, “MHD forced convection and entropy generation of Cuo-water nanofluid in a microchannel considering slip velocity and temperature jump,” J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 775–790, 2017. DOI: 10.1007/s40430-016-0578-7.
  • P. Mayeli, H. Hesami, and M. H. D. Faraji Moghaddam, “Numerical Investigation of the MHD forced convection and entropy generation in a straight duct with sinusoidal walls containing water–Al2O3 nanofluid,” Numer. Heat Transf. A Appl., vol. 71, no. 12, pp. 1235–1250, 2017. DOI: 10.1080/10407782.2017.1346998.
  • P. Mayeli, H. Hesami, H. Besharati-Foumani, and M. Niajalili, “Al2O3–water nanofluid heat transfer and entropy generation in a ribbed channel with wavy wall in the presence of magnetic field,” Numer. Heat Transf. A Appl., vol. 73, no. 9, pp. 604–623, 2018. DOI: 10.1080/10407782.2018.1461494.
  • S. K. Mehta and S. J. Pati, “Analysis of thermo-hydraulic performance and entropy generation characteristics for laminar flow through triangular corrugated channel,” Therm. Anal. Calorim., vol. 134, pp. 1–14, 2018. DOI: 10.1007/s10973-018-7969-1.
  • D. Cholaseuk, V. Srinivasan, and V. Modi, “Shape optimization for fluid flow problems using bezier curves and designed numerical experiments,” presented at the Proc. 1999 ASME Des. Eng. Technol. Conf., Comput. Info. Eng, pp. 283–290, 1999.
  • M. Dehghani, H. Ajam, and S. Farahat, “Automated diffuser shape optimization based on CFD simulations and surrogate modeling,” J. Appl. Fluid. Mech., vol. 9, no. 5, pp. 2527–2535, 2016. DOI: 10.18869/acadpub.jafm.68.236.24085.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • H. E. Patel et al., “A micro-convection model for thermal conductivity of nanofluid,” Pramana J. Phys., vol. 65, no. 5, pp. 863–869, 2005. DOI: 10.1007/BF02704086.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–581, 1952. DOI: 10.1063/1.1700493.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism. 2nd ed. Cambridge: Oxford University Press, 1904, pp. 435–441.
  • M. S. Tillack, and N. B. Morley, Magnetohydrodynamics (Standard Handbook for Electrical Engineers), 14th ed. New York City, USA: McGraw Hill, 1998.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th ed. Hoboken, New Jersey, USA: John Wiley & Sons Inc., 2011.
  • A. K. Santra, S. Sen, and N. Chakraborty, “Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 391–400, 2009. DOI: 10.1016/j.ijthermalsci.2008.10.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.