Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 10
153
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Generation of entropy during forced convection of heat in nanofluid stagnation-point flows over a cylinder embedded in porous media

, , &
Pages 647-673 | Received 25 Feb 2019, Accepted 11 Apr 2019, Published online: 06 Jun 2019

References

  • K. Vafai (Ed.), Handbook of Porous Media. Boca Raton, FL, USA: CRC Press, 2015.
  • O. Mahian et al., “A review of entropy generation in nanofluid flow,” Int. J. Heat Mass Transf., vol. 65, pp. 514–532, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.010.
  • R. A. Mahdi, H. A. Mohammed, K. M. Munisamy, and N. H. Saeid, “Review of convection heat transfer and fluid flow in porous media with nanofluid,” Renew. Sust. Energ. Rev., vol. 41, pp. 715–734, 2015.vol DOI: 10.1016/j.rser.2014.08.040.
  • A. Kasaeian et al., “Nanofluid flow and heat transfer in porous media: a review of the latest developments,” Int. J. Heat Mass Transf., vol. 107, pp. 778–791, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.074.
  • A. Albojamal, H. Hamzah, A. Haghighi, and K. Vafai, “Analysis of nanofluid transport through a wavy channel,” Num. Heat Transf., Part A vol. 72, no. 12, pp. 869–890, 2017. DOI: 10.1080/10407782.2017.1412679.
  • A. T. Al-Sammarraie, M. Al-Jethelah, M. R. Salimpour, and K. Vafai, “Nanofluids transport through a novel concave/convex convergent pipe,” Num. Heat Transf., Part A, vol. 75, no. 2, pp. 91–109, 2019. DOI: 10.1080/10407782.2019.1579517.
  • R. Alizadeh, A. B. Rahimi, N. Karimi, and A. Alizadeh, “On the hydrodynamics and heat convection of an impinging external flow upon a cylinder with transpiration and embedded in a porous medium,” Transport Porous Med., vol. 120, no. 3, pp. 579–604, 2017. DOI: 10.1007/s11242-017-0942-9.
  • C. Dickson, M. Torabi, and N. Karimi, “First and second law analysis of nanofluid convection through a porous channel-The effects of partial filling and internal heat sources,” Appl. Therm. Eng., vol. 103, pp. 459–480, 2016. DOI: 10.1016/j.applthermaleng.2016.04.095.
  • M. Torabi, C. Dickson, and N. Karimi, “Theoretical investigation of entropy generation and heat transfer by forced convection of copper-water nanofluid in a porous channel- Local thermal non-equilibrium and partial filling effects,” Powder Technol., vol. 301, pp. 234–254, 2016. DOI: 10.1016/j.powtec.2016.06.017.
  • M. H. Saidi, and H. Tamim, “Heat transfer and pressure drop characteristics of nanofluid inunsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion,” Adv. Powder Technol., vol. 27, no. 2, pp. 564–574, 2016. DOI: 10.1016/j.apt.2016.02.011.
  • M. M. Rashidi, S. Mahmud, N. Freidoonimehr, and B. Rostami, “Analysis of entropy generation in an MHD flow over a rotating porous disk with variable physical properties,” Int. J. Energy, vol. 16, no. 4, pp. 481–503, 2015. DOI: 10.1504/IJEX.2015.069110.
  • N. Bachok, A. Ishak, and I. Pop, “Flow and heat transfer over a rotating porous disk in a nanofluid,” Phys. B, vol. 406, no. 9, pp. 1767–1772, 2011. DOI: 10.1016/j.physb.2011.02.024.
  • M. Hatami, M. Sheikholeslami, and D. D. Ganji, “Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method,” Powder Technol., vol. 253, pp. 769–779, 2014. DOI: 10.1016/j.powtec.2013.12.053.
  • M. Hosseini, E. Mohammadian, M. Shirvani, S. N. Mirzababaei, and F. S. Aski, “Thermal analysis of rotating system with porous plate using nanofluid,” Powder Technol., vol. 254, pp. 563–571, 2014. DOI: 10.1016/j.powtec.2014.01.070.
  • M. Khazayinejad, M. Hatami, D. Jing, M. Khaki, and G. Domairry, “Boundary layer flow analysis of a nanofluid past a porous moving semi-infinite flat plate by optimal collocation method,” Powder Technol., vol. 301, pp. 34–43, 2016. DOI: 10.1016/j.powtec.2016.05.053.
  • Q. Wu, S. Weinbaum, and Y. Andreopoulos, “Stagnation-point flows in a porous medium,” Chem. Eng. Sci., vol. 60, no. 1, pp. 123–134, 2005. DOI: 10.1016/j.ces.2004.07.062.
  • T. M. Jeng, and S. C. Tzeng, “Numerical study of confined slot jet impinging on porous metallic foam heat sink,” Int. J. Heat Mass Transf., vol. 48, no. 23–24, pp. 4685–4694, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.06.032.
  • T. M. Jeng, and S. C. Tzeng, “Experimental study of forced convection in metallic porous block subject to a confined slot jet,” Int. J. Therm. Sci., vol. 46, no. 12, pp. 1242–1250, 2007. DOI: 10.1016/j.ijthermalsci.2007.01.007.
  • K. C. Wong, and N. H. Saeid, “Numerical study of mixed convection on jet impingement cooling in a horizontal porous layer-using Brinkman-extended Darcy model,” Int. J. Therm. Sci., vol. 48, no. 1, pp. 96–104, 2009. DOI: 10.1016/j.ijthermalsci.2008.03.006.
  • K. C. Wong, and N. H. Saeid, “Numerical study of mixed convection on jet impingement cooling in a horizontal porous layer under local thermal non-equilibrium conditions,” Int. J. Therm. Sci., vol. 48, no. 5, pp. 860–870, 2009. DOI: 10.1016/j.ijthermalsci.2008.06.004.
  • S. D. Harris, D. B. Ingham, and I. Pop, “Mixed convection boundary-layer flow near the stagnation‐point on a vertical surface in a porous medium: Brinkman model with slip,” Transport Porous Med., vol. 77, no. 2, pp. 267–285, 2009. DOI: 10.1007/s11242-008-9309-6.
  • A. Sivasamy, V. Selladurai, and P. R. Kanna, “Mixed convection on jet impingement cooling of a constant heat flux horizontal porous layer,” Int. J. Therm. Sci., vol. 49, no. 7, pp. 1238–1246, 2010. DOI: 10.1016/j.ijthermalsci.2010.01.010.
  • M. A. Kokubun, and F. F. Fachini, “An analytical approach for a Hiemenz flow in a porous medium with heat exchange,” Int. J. Heat Mass Transf., vol. 54, no. 15–16, pp. 3613–3621, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.03.021.
  • S. S. Feng, J. J. Kuang, T. Wen, T. J. Lu, and K. Ichimiya, “An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling,” Int. J. Heat Mass Transf., vol. 77, pp. 1063–1074, 2014.
  • B. Buonomo, G. Lauriat, O. Manca, and S. Nardini, “Numerical investigation on laminar slot-jet impinging in a confined porous medium in local thermal non-equilibrium,” Int. J. Heat Mass Transf., vol. 98, pp. 484–492, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.036.
  • B. A. K. Abu-Hijleh, “Entropy generation due to cross-flow heat transfer from a cylinder covered with an orthotropic porous layer,” Heat Mass Transf., vol. 39, no. 1, pp. 27–40, 2002. DOI: 10.1007/s00231-001-0279-2.
  • M. M. Rashidi, and N. Freidoonimehr, “Analysis of entropy generation in MHD stagnation-point flow in porous media with heat transfer,” Int. J. Comput. Meth. Eng. Sci. Mech., vol. 15, no. 4, pp. 345–355, 2014. DOI: 10.1080/15502287.2014.915248.
  • K. Hiemenz, “Die Grenzschicht an einem in den gleichformigenFlussigkeitsstromeingetauchtengeradenKreiszlynder,” Dinglers Polytech. J., vol. 326, pp. 321–324, 1911.
  • M. M. Rashidi, S. Abelman, and N. F. Mehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid,” Int. J. Heat Mass Transf., vol. 62, pp. 515–525, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.004.
  • J. Qing, M. M. Bhatti, M. A. Abbas, M. M. Rashidi, and M. E. S. Ali, “Entropy generation on MHD Cassonnanofluid flow over a porous stretching/shrinking surface,” Entropy, vol. 18, no. 4, pp. 123, 2016. DOI: 10.3390/e18040123.
  • N. Freidoonimehr, and A. B. Rahimi, “Exact-solution of entropy generation for MHD nanofluid flow induced by a stretching/shrinking sheet with transpiration: dual solution,” Adv. Powder Technol., vol. 28, no. 2, pp. 671–685, 2017. DOI: 10.1016/j.apt.2016.12.005.
  • M. M. Bhatti, and M. M. Rashidi, “Numerical simulation of entropy generation on MHD nanofluid towards a stagnation‐point flow over a stretching surface,” Int. J. Appl. Comput. Math., vol. 3, no. 3, pp. 2275–2289, 2017. DOI: 10.1007/s40819-016-0193-4.
  • R. Alizadeh, A. B. Rahimi, and M. Najafi, “Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity,” J. Braz. Soc. Mech. Sci. & Eng., vol. 38, no. 1, pp. 85–98, 2016. DOI: 10.1007/s40430-015-0389-2.
  • R. Alizadeh, A. B. Rahimi, R. Arjmandzadeh, M. Najafi, and A. Alizadeh, “Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid with variable viscosity on a cylinder in constant heat flux,” Alexandria Eng. J., vol. 55, no. 2, pp. 1271–1283, 2016. DOI: 10.1016/j.aej.2016.04.017.
  • R. Alizadeh, A. B. Rahimi, and M. Najafi, “Magnetohydrodynamic unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a stationary cylinder,” Alexandria Eng. J., vol. 55, no. 1, pp. 37–49, 2016.
  • A. Tahmasebi, M. Mahdavi, and M. Ghalambaz, “Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model,” Num. Heat Transf., Part A vol. 73, no. 4, pp. 254–276, 2018. DOI: 10.1080/10407782.2017.1422632.
  • H. R. Ashorynejad, M. Sheikholeslami, I. Pop, and D. D. Ganji, “Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field,” Heat Mass Transf., vol. 49, no. 3, pp. 427–436, 2013. DOI: 10.1007/s00231-012-1087-6.
  • G. M. Cunning, A. M. J. Davis, and P. D. Weidman, “Radial Stagnation Flow on a Rotating Cylinder with Uniform Transpiration,” J. Eng. Math., vol. 33, no. 2, pp. 113–128, 1998.
  • R. Saleh, and A. B. Rahimi, “Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Moving Cylinder with Time- Dependent Axial Velocity and Uniform Transpiration,” J. Fluids Eng., vol. 126, no. 6, pp. 997–1005, 2004. DOI: 10.1115/1.1845556.
  • J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, vol. 22. Berlin, Germany: Springer Science & Business Media, 2013.‏
  • P. Ganesan, and G. Palani, “Finite difference analysis of unsteady natural convection MHD flow past an inclined plate with variable surface heat and mass flux,” Int. J. Heat Mass Transf., vol. 47, no. 19–20, pp. 4449–4457, 2004. DOI: 10.1016/j.ijheatmasstransfer.2004.04.034.
  • M. Torabi, N. Karimi, G. P. Peterson, and S. Yee, “Challenges and progress on modeling of entropy generation in porous media: a review,” Int. J. Heat Mass Transf., vol. 114, pp. 31–46, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.021.
  • M. Torabi, K. Zhang, N. Karimi, and G. P. Peterson, “Entropy generation in thermal systems with solid structures-a concise review,” Int. J. Heat Mass Transf., vol. 97, pp. 917–931, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.03.007.
  • T. Bergman, A. Lavine, F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer. Hoboken, NJ: John Wiley & Sons, 2011.
  • W. M Deen, Analysis of Transport Phenomena. Oxford, UK: Oxford University Press, 1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.