Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 75, 2019 - Issue 10
327
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A numerical investigation on dynamics of ferrofluid droplet in nonuniform magnetic field

, , &
Pages 690-707 | Received 19 Feb 2019, Accepted 15 Apr 2019, Published online: 06 Jun 2019

References

  • R. Rosensweig, Ferrohydrodynamics. Cambridge: Cambridge University Press, 1985.
  • M. Cowley and R. Rosensweig, “The interfacial stability of a ferromagnetic fluid,” J. Fluid Mech., vol. 30, no. 04, pp. 671–688, 1967. DOI: 10.1017/S0022112067001697.
  • A. Dickstein, S. Erramilli, R. Goldstein, D. Jackson, and S. A. Langer, “Labyrinthine pattern formation in magnetic fluids,” Science, vol. 261, no. 5124, pp. 1012–1015, 1993. DOI: 10.1126/science.261.5124.1012.
  • Y. Sun, Y. Kwok, and N. Nguyen, “A circular ferrofluid driven microchip for rapid polymerase chain reaction,” Lab Chip, vol. 7, no. 8, pp. 1012–1017, 2007. DOI: 10.1039/b700575j.
  • H. Hartshorne, C. Backhouse, and W. Lee, “Ferrofluid-based microchip pump and valve,” Sens. Actuators B Chem., vol. 99, no. 2-3, pp. 592–600, 2004. DOI: 10.1016/j.snb.2004.01.016.
  • Y. Chang, C. Hu, and C. Lin, “A microchannel immunoassay chip with ferrofluid actuation to enhance the biochemical reaction,” Sens. Actuators B Chem., vol. 182, pp. 584–591, 2013. DOI: 10.1016/j.snb.2013.03.078.
  • K. Raj and R. Moskowitz, “Commercial applications of ferrofluids,” J. Magn. Magn. Mater., vol. 85, no. 1-3, pp. 233–245, 1990. DOI: 10.1016/0304-8853(90)90058-X.
  • Z. Wang, R. Wu, Z. Wang, and R. Ramanujan, “Magnetic trapping of bacteria at low magnetic fields,” Sci. Rep., vol. 6, pp. 26945, 2016. DOI: 10.1038/srep26945.
  • Q. Liu, S. Alazemi, M. Daqaq, and G. Li, “A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation,” J. Magn. Magn. Mater., vol. 449, pp. 105–118, 2018. DOI: 10.1016/j.jmmm.2017.09.064.
  • X. Liu et al., “Preparation and characterization of biodegradable magnetic carriers by single emulsion-solvent evaporation,” J. Magn. Magn. Mater., vol. 311, no. 1, pp. 84–87, 2007. DOI: 10.1016/j.jmmm.2006.10.1170.
  • O. Mefford et al., “Field-induced motion of ferrofluids through immiscible viscous media,” J. Magn. Magn. Mater., vol. 311, no. 1, pp. 347–353, 2007. DOI: 10.1016/j.jmmm.2006.10.1174.
  • M. Korlie, A. Mukherjee, B. Nita, J. Stevens, A. Trubatch, and P. Yecko, “A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation,” J. Phys. Condens. Matter, vol. 20, no. 20, pp. 204143, 2008. DOI: 10.1088/0953-8984/20/20/204143.
  • H. Ki, “Level set method for two-phase incompressible flows under magnetic fields,” Comput. Phys. Commun., vol. 181, no. 6, pp. 999–1007, 2010. DOI: 10.1016/j.cpc.2010.02.002.
  • M. Habera and J. Hron, “Modelling of a free-surface ferrofluid flow,” J. Magn. Magn. Mater., vol. 431, pp. 157–160, 2017. DOI: 10.1016/j.jmmm.2016.10.045.
  • S. Afkhami, Y. Renardy, M. Renardy, J. Riffle, and T. Pierre, Numerical modeling of ferrofluid droplets in magnetic fields, presented at the AIP Conference Proceedings, vol. 1027, pp. 884–886, 2008.
  • S. Afkhami et al., “Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields,” J. Fluid Mech., vol. 663, pp. 358–384, 2010. DOI: 10.1017/S0022112010003551.
  • D. Shi, Q. Bi, and R. Zhou, “Numerical simulation of a falling ferrofluid droplet in a uniform magnetic field by the VOSET method,” Numer. Heat Transf. Part A Appl., vol. 66, no. 2, pp. 144–164, 2014. DOI: 10.1080/10407782.2013.869459.
  • A. Ghaffari, S. Hashemabadi, and M. Bazmi, “CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform field,” Collid. Surf. A Physicochem. Eng. Asp., vol. 481, pp. 186–198, 2015. DOI: 10.1016/j.colsurfa.2015.04.038.
  • P. Capobianchi, M. Lappa, and M. Oliveira, “Deformation of a ferrofluid droplet in a simple shear flow under the effect of a constant magnetic field,” Computer. Fluids, vol. 173, pp. 313–323, 2018. DOI: 10.1016/j.compfluid.2018.06.024.
  • J. Liu, S. Tan, Y. Yap, M. Ng, and N. Nguyen, “Numerical and experimental investigations of the formation process of ferrofluid droplets,” Microfluid Nanofluid, vol. 11, no. 2, pp. 177–187, 2011. DOI: 10.1007/s10404-011-0784-7.
  • J. Liu, Y. Yap, and N. Nguyen, “Numerical study of the formation process of ferrofluid droplets,” Phys. Fluids, vol. 23, no. 7, pp. 072008, 2011. DOI: 10.1063/1.3614569.
  • U. Sen et al., “Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications,” J. Magn. Magn. Mater, vol. 421, pp. 165–176, 2017. DOI: 10.1016/j.jmmm.2016.07.048.
  • M. Aboutalebi, M. Bijarchi, M. Shafii, and S. Hannani, “Numerical investigation on splitting of ferrofluid microdroplets in t-junctions using an asymmetric magnetic field with proposed correlation,” J. Magn. Magn. Mater., vol. 447, pp. 139–149, 2018. DOI: 10.1016/j.jmmm.2017.09.053.
  • V. Varma et al., “Control of ferrofluid droplets in microchannels by uniform magnetic fields,” IEEE Magn. Lett., vol. 7, pp. 1–5, 2016, DOI: 10.1109/LMAG.2016.2594165.
  • A. Ray et al., “Magnetic droplet merging by hybrid magnetic fields,” IEEE Magn. Lett., vol. 7, pp. 1–5, 2016. DOI: 10.1109/LMAG.2016.2613065.
  • M. Hassan, J. Zhang, and C. Wang, “Deformation of a ferrofluid droplet in simple shear flows under uniform magnetic fields,” Phys. Fluids, vol. 30, no. 9, pp. 092002, 2018.
  • A. Ghaderi, M. Kayhani, and M. Nazari, “Numerical investigation on falling ferrofluid droplet under uniform magnetic field,” Eur. J. Mech. B Fluids, vol. 72, pp. 1–11, 2018. DOI: 10.1016/j.euromechflu.2018.04.008.
  • D. Sun and W. Tao, “A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows,” Int. J. Heat Mass Transf., vol. 53, no. 4, pp. 645–655, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.030.
  • K. Ling, Z. Li, D. Sun, Y. He, and W. Tao, “A three-dimensional volume of fluid & level set (VOSET) method for incompressible two-phase flow,” Comput. Fluids, vol. 118, pp. 293–304, 2015. DOI: 10.1016/j.compfluid.2015.06.018.
  • G. Tryggvason, R. Scardovelli, and, and S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge: Cambridge University Press, 2011.
  • J. Brackbill, D. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • W. Lee, R. Scardovelli, A. Trubatch, and P. Yecko, “Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids,” Phys. Rev. E, vol. 82, pp. 016302, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.