Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 2
380
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Heat transfer performance investigation of the spherical dimple heat sink and inclined teardrop dimple heat sink

&
Pages 73-86 | Received 01 Feb 2019, Accepted 25 Apr 2019, Published online: 28 May 2019

References

  • P. W. Bearman, and J. K. Harvey, “Control of Circular Cylinder Flow by the Use of Dimples,” AIAA J., vol. 31, no. 10, pp. 1753–1756, 1993. DOI:10.2514/3.11844.
  • M. K. Chyu, Y. Yu, H. Ding, J. P. Downs, and F. O. Soechting, “Concavity Enhanced Heat Transfer in an Internal Cooling Passage,” ASME, Paper 97-GT, vol. 437, 1997.
  • H. K. Moon, T. Ò Connell, and B. Glezer, “Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage,” ASME Paper 99-GT, vol. 163, pp. 307, 1999. DOI:10.1115/1.483208.
  • G. I. Mahmood, M. L. Hill, D. L. Nelson, P. M. Ligrani, H. K. Moon, and B. Glezer, “Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel,” J. Turbo Mach., vol. 123, no. 1, pp. 115–123, 2001. DOI:10.1115/1.1333694.
  • G. I. Mahmood, P. M. Ligrani, and M. Z. Sabbagh, “Heat Transfer in a Channel with Dimples and Protrusiononon opposite Walls,” J. Thermophys. Heat Transf., vol. 15, no. 3, pp. 275–283, 2001. DOI:10.2514/2.6623.
  • G. I. Mahmood, and P. M. Ligrani, “Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure,” Int. J. Heat Mass Transf., vol. 45, no. 10, pp. 2011–2020, 2002. DOI:10.1016/S0017-9310(01)00314-3.
  • N. K. Burgess, and P. M. Ligrani, “Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors,” J. Heat Transf., vol. 127, no. 8, pp. 839–847, 2005. DOI:10.1115/1.1994880.
  • P. M. Ligrani, N. K. Burgess, and S. Y. Won, “Nusselt Numbers and Flow Structure on and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level,” J. Turbomach., vol. 127, no. 2, pp. 321–330, 2005. DOI:10.1115/1.1861913.
  • E. Small, S. M. Sadeghipour, and M. Asheghi, “Heat Sinks with Enhanced Heat Transfer Capability for Electronic Cooling Applications,” J. Electron. Pack., vol. 127, no. 3, pp. 285–290, 2005.
  • Y. L. Lin, T. I. Shih, and M. K. Chyu, “Computations for Flow and Heat Transfer in a Channel with Rows of Hemispherical Cavities,” ASME Paper 99-GT, vol. 263, 1999.
  • Silva, C. Park, D. Marotta, E. Fletcher, and L. “Optimization of Heat Sink Performance in Microelectronics Through Dimpled Surfaces: Study on Dimple Geometry and Array” Proceedings of the 2007 ASME Graduate Student Research Innovation Conference, ASME, Fairfield, NJ, April 2007.
  • K. Kota, L. Burton, and Y. Joshi, “Performance of an Air-Cooled Heat Sink Channel With Microscale Dimples under Transitional Flow Conditions,” J. Heat Transfer, vol. 135, no. 11, pp. 111005–111001-9, 2013.
  • D. Park, C. Silva, E. Marotta, and L. Fletcher, “Study of Laminar Forced Convection Heat Transfer for Dimpled Heat Sinks,” J. Thermophys. Heat Transf., vol. 22, no. 2, pp. 262–269, 2008. DOI:10.2514/1.33497.
  • A. Perwez, S. Shinde, and R. Kumar, “Heat transfer and friction factor characteristic of Spherical and inclined teardrop dimple channel subjected to forced convection,” Exp. Heat Transf., vol. 32, no. 2, pp. 159–178, 2019. DOI:10.1080/08916152.2018.1485786.
  • Park, J. Desam, P. R. Ligrani, P, and M. “Numerical predictions of flow structure above a dimpled surface in a channel,” Num. Heat Transf. Part A, vol. 45, no. 1, pp. 1–20, 2004. DOI:10.1080/1040778049026740.
  • Samad, A. Lee, K. D. Kim, K, and Y. “Multi-objective optimization of a dimpled channel for heat transfer augmentation,” Heat Mass Transf., vol. 45, no. 2, pp. 207–2017, 2008. DOI:10.1007/s00231-008-0420-6.
  • A. Perwez, S. Shinde, and R. Kumar, “Forced convection based heat transfer analysis of spherical dimpled protrusion surface in turbulent flow,” Trans. Canadian Soc. Mech. Eng., vol. 41, no. 5, pp. 771–786, 2017. DOI:10.1139/tcsme-2017-511.
  • Gupta, S. K. Ray, S. Chatterjee, and D. “Forced Convection Heat Transfer in Power-Law Fluids around a Semicircular Cylinder at Incidence,” Num. Heat Transf. Part A, vol. 67, no. 9, pp. 952–971, 2015. DOI:10.1080/10407782.2014.955335.
  • P. Promthaisong, W. Jedsadaratanachai, and S. Eiamsa-Ard, “3D Numerical Study on the Flow Topology and Heat Transfer Characteristics of Turbulent Forced Convection in a Spirally Corrugated Tube”, Num. Heat Transf. Part A, vol. 69, no. 6, pp. 607–629, 2016. DOI:10.1080/10407782.2015.1069670.
  • Korukcu, MO. “Numerical Modeling of Heat and Mass Transfer Characteristics During the Forced Convection Drying of a Square Cylinder Under Strong Blockage,” Numerical Heat Transfer, Part A, vol. 72, no. 2, pp. 171–184, 2017. DOI:10.1080/10407782.2017.1359004.
  • Ghasemi, S. E. Ranjbar, A. A. Hosseini, M, and J. “Numerical Study on the Convective Heat Transfer of Nanofluid in a Triangular Mini-Channel Heat Sink Using the Eulerian-Eulerian two-Phase Model,” Num. Heat Transf. Part A, vol. 72, no. 2, pp. 185–196, 2017. DOI:10.1080/10407782.2017.1358990.
  • R. Kumar, N. Sahoo, and V. Kulkarni, “Conduction based calibration of handmade platinum thin film heat transfer gauges for transient measurements,” Int. J. Heat Mass Transf., vol. 55, no. 9–10, pp. 2707–2713, 2012. DOI:10.1016/j.ijheatmasstransfer.2012.01.026.
  • R. Kumar, and N. Sahoo, “Dynamic Calibration of a Coaxial Thermocouples for Short Duration Transient Measurements,” J. Heat Transf ASME, vol. 135, no. 12, pp. 124502–124507, 2013.DOI:10.1115/1.4024593.
  • Manjhi, S. K. Kumar, and R. “Transient Heat Flux Measurement, Analysis From Coaxial Thermocouples at Convective Based Step Heat Load,” Num. Heat Transf. Part A, vol. 75, no. 3, pp. 200–216, 2019. DOI:10.1080/10407782.2019.1580955.
  • Y. Rao, T. Feng, B. Li, and B. Weigand, “Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels With Dimples of Different Shapes,” ASME J. Heat Transfer, vol. 137, no. 3, pp. 031901, 2015.
  • S. J. Kline, and F. A. McClintock, “Describing Uncertainties in Single Sample Experiments,” Mech. Eng., vol. 75, pp. 3–8, 1953.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.