Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 2
139
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A segregated spectral element method for thermomagnetic convection of paramagnetic fluid in rectangular enclosures with sinusoidal temperature distribution on one side wall

, , &
Pages 51-72 | Received 09 Nov 2018, Accepted 02 May 2019, Published online: 21 May 2019

References

  • D. Braithwaite, E. Beaugnon, and R. Tournier, “Magnetically controlled convection in paramagnetic fluid,” Nature, vol. 354, pp. 667–673, 1991.
  • J. W. Qi, N. I. Wakayama, and A. Yabe, “Magnetic control of thermal convection in electrically non-conducting or low conducting paramagnetic fluids,” Int. J. Heat Mass Transfer, vol. 44, no. 16, pp. 3043–3052, 2001. DOI:10.1016/S0017-9310(00)00354-9.
  • L. B. Wang and N. I. Wakayama, “Control of natural convection in non- and low-conducting diamagnetic fluids in a cubical enclosure using inhomogeneous magnetic fields with different directions,” Chem. Eng. Sci., vol. 57, no. 11, pp. 1867–1876, 2002. DOI:10.1016/S0009-2509(02)00090-8.
  • T. Tagawa, R. Shigemitsu, and H. Ozoe, “Magnetizing force modeled and numerically solved for natural convection of air in a cubic enclosure: effect of the direction of the magnetic field,” Int. J. Heat Mass Transfer, vol. 45, no. 2, pp. 267–277, 2002. DOI:10.1016/S0017-9310(01)00149-1.
  • T. Tagawa, A. Ujihara, and H. Ozoe, “Numerical computation for Rayleigh-Benard convection of water in a magnetic field,” Int. J. Heat Mass Transfer, vol. 46, no. 21, pp. 4097–4104, 2003. DOI:10.1016/S0017-9310(03)00223-0.
  • M. Akamatsu, M. Higano, Y. Takahashi, and H. Ozoe, “Numerical computation on the control of aerial flow by the magnetizing force in gravitational and nongravitational fields,” Numer. Heat Transfer A, vol. 43, no. 1, pp. 9–29, 2003. DOI:10.1080/10407780307301.
  • C. W. Jiang, E. Shi, Z. M. Hu, X. F. Zhu, and N. Xie, “Numerical simulation of thermomagnetic convection of air in a porous square enclosure under a magnetic quadrupole field using LTNE models,” Int. J. Heat Mass Transfer, vol. 91, pp. 98–109, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.07.103.
  • I. E. Sarris, N. Katsavos, I. Lekakis, and N. S. Vlachos, “Modelling the influence of combustion on glass melt flow,” presented at the Proc. 6th National Conf. of Solar Technology Institute, Volos, Greece, vol. 2, pp. 201–209, 1999.
  • C. Q. Jian, A. Dutta, A. Mukhopadhyay, and D. P. Tselepidakis, “Explicit coupling between combustion space and glass tank simulation for complete furnace analysis,” presented at the Proc. 1st Balkan Conf. on Glass Science and Technology, Volos, Greece, pp. 402–409, 2000.
  • T. Basak, S. Roy, and A. R. Balakrishman, “Effects of thermal boundary condition on natural convection flows with a square cavity,” Int. J. Heat Mass Transfer, vol. 49, no. 23–24, pp. 4525–4535, 2006. DOI:10.1016/j.ijheatmasstransfer.2006.05.015.
  • I. E. Sarris, I. Lekakis, and N. S. Vlachos, “Natural convection in a 2D enclosure with sinusoidal upper wall temperature,” Numer. Heat Transfer A, vol. 42, no. 5, pp. 513–530, 2002. DOI:10.1080/10407780290059675.
  • Y. Varol, H. F. Oztop, and I. Pop, “Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall,” Int. Commun. Heat Mass, vol. 35, no. 1, pp. 56–64, 2008. DOI:10.1016/j.icheatmasstransfer.2007.05.015.
  • E. Bilgen and R. B. Yedder, “Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side,” Int. J. Heat Mass Transfer, vol. 50, no. 1–2, pp. 139–150, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.06.027.
  • Q. H. Deng and J. J. Chang, “Natural convection in a rectangular enclosure with sinusoidal temperature distribution on both side walls,” Numer. Heat Transfer A, vol. 54, no. 5, pp. 507–524, 2008. DOI:10.1080/01457630802186080.
  • M. Bhuvaneswari, S. Sivasankaran, and Y. J. Kim, “Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls,” Numer. Heat Transfer A, vol. 59, no. 3, pp. 167–184, 2011. DOI:10.1080/10407782.2011.541219.
  • T. P. Bednarz, W. X. Lin, J. C. Patterson, C. W. Lei, and S. W. Armfield, “Scaling for unsteady thermo-magnetic convection boundary layer of paramagnetic fluids of Pr > 1 in micro-gravity conditions,” Int. J. Heat Fluid FL, vol. 30, no. 6, pp. 1157–1170, 2009. DOI:10.1016/j.ijheatfluidflow.2009.08.003.
  • M. Kaneda, A. Tsuji, H. Ooka, and K. Suga, “Heat transfer enhancement by external magnetic field for paramagnetic laminar pipe flow,” Int. J. Heat Mass Transfer, vol. 90, pp. 388–395, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.06.078.
  • M. Akamatsu, K. Yasuhara, M. Kaneda, and H. Ozoe, “Heat transfer rate characteristics of the magnetothermal Rayleigh-Benard convection of paramagnetic air,” Int. J. Therm. Sci., vol. 89, pp. 13–22, 2015. DOI:10.1016/j.ijthermalsci.2014.10.007.
  • S. Kenjereš, L. Pyrda, E. F. Wajs, and J. S. Szmyd, “Numerical and experimental study of Rayleigh-Bénard-Kelvin convection,” Flow Turbul. Combust., vol. 92, no. 1–2, pp. 371–393, 2014. DOI:10.1007/s10494-013-9490-8.
  • D. G. Kang and J. M. Hyun, “Resonant enhancement of natural convection in a cubic enclosure under time-periodic magnetizing force,” J. Mech. Sci. Technol., vol. 31, no. 2, pp. 717–724, 2017. DOI:10.1007/s12206-017-0123-3.
  • E. Shi, X. Q. Sun, Y. C. He, and C. W. Jiang, “Effect of a magnetic quadrupole field on entropy generation in thermomagnetic convection of paramagnetic fluid with and without a gravitational field,” Entropy, vol. 19, no. 3, pp. 96–113, 2017. DOI:10.3390/e19030096.
  • G. R. Kefayati, “Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field,” Theor. Comput. Fluid Dyn., vol. 27, no. 6, pp. 865–883, 2013. DOI:10.1007/s00162-012-0290-x.
  • N. Xie, Y. H. He, M. Yao, and C. W. Jiang, “Lattice Boltzmann simulation of transient natural convection of air in square cavity under a magnetic quadrupole field,” Int. J. Numer. Meth. HFF, vol. 26, no. 8, pp. 2441–2461, 2016. DOI:10.1108/HFF-07-2015-0277.
  • N. Xie, C. W. Jiang, Y. H. He, and M. Yao, “Lattice Boltzmann method for thermomagnetic convection of paramagnetic fluid in square cavity under a magnetic quadrupole field,” J. Cent. South Univ., vol. 24, no. 5, pp. 1174–1182, 2017. DOI:10.1007/s11771-017-3520-y.
  • A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion,” J. Comput. Phys., vol. 54, no. 3, pp. 468–488, 1984. DOI:10.1016/0021-9991(84)90128-1.
  • T. Gjesdal, C. E. Wasberg, and B. A. P. Reif, “Spectral element benchmark simulation of natural convection in two-dimensional cavities,” Int. J. Numer. Meth. Fluids, vol. 50, no. 11, pp. 1297–1319, 2006. DOI:10.1002/fld.1121.
  • C. Bosshard, A. Dehbi, M. Deville, E. Leriche, R. Puragliesi, and A. Soldati, “Large Eddy simulation of the differentially heated cubic cavity flow by the spectral element method,” Comput. Fluids, vol. 86, pp. 210–227, 2013. DOI:10.1016/j.compfluid.2013.07.007.
  • S. Patel, M. Min, and T. Lee, “A spectral-element discontinuous Galerkin thermal lattice Boltzmann method for conjugate heat transfer applications,” Int. J. Numer. Meth. Fluids, vol. 82, no. 12, pp. 932–952, 2016. DOI:10.1002/fld.4250.
  • Y. Z. Wang, G. L. Qin, W. Q. He, and Z. Z. Bao, “Chebyshev spectral element method for natural convection in a porous cavity under local thermal non-equilibrium model,” Int. J. Heat Mass Transfer, vol. 121, pp. 1055–1072, 2018. DOI:10.1016/j.ijheatmasstransfer.2018.01.024.
  • S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, vol. 15, no. 10, pp. 1787–1806, 1972. DOI:10.1016/0017-9310(72)90054-3.
  • J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 3749–3766, 2007. DOI:10.1016/j.ijheatmasstransfer.2007.02.015.
  • B. Klein, F. Kummer, and M. Berlack, “A SIMPLE based discontinuous Galerkin solver for steady incompressible flows,” J. Comput. Phys., vol. 237, pp. 235–250, 2013. DOI:10.1016/j.jcp.2012.11.051.
  • J. G. Rice and R. J. Schnipke, “An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes,” Comput. Meth. Appl. M, vol. 58, no. 2, pp. 135–149, 1986. DOI:10.1016/0045-7825(86)90093-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.