Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
269
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of meniscus dynamics in monolayer-wick dropwise condensation

, , &
Pages 301-322 | Received 28 Feb 2019, Accepted 31 May 2019, Published online: 24 Jun 2019

References

  • J. W. Rose, “Dropwise condensation theory and experiment: a review,” J. Power Energy, vol. 216, no. 2, pp. 115–128, 2002. DOI: 10.1243/09576500260049034.
  • R. W. Bonner, “Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination,” Int. J. Heat Mass Transfer, vol. 61, pp. 245–253, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.045.
  • E. J. Le Fevre, and J. W. Rose, “An experimental study of heat transfer by dropwise condensation,” Int. J. Heat Mass Transfer, vol. 8, no. 8, pp. 1117–1133, 1965. DOI: 10.1016/0017-9310(65)90139-0.
  • R. Leach, F. Stevens, S. Langford, and J. Dickinson, “Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system,” Langmuir, vol. 22, no. 21, pp. 8864–8872, 2006. DOI: 10.1021/la061901+.
  • B. Mikic, “On mechanism of dropwise condensation,” Int. J. Heat Mass Transfer, vol. 12, no. 10, pp. 1311–1323, 1969. DOI: 10.1016/0017-9310(69)90174-4.
  • B. Qi, Z. Song, and X. Li, “Numerical study on condensation heat transfer of trapezoid grooved surfaces,” Adv. Mech. Eng., vol. 8, no. 5, pp. 1–11, 2016. DOI: 10.1177/1687814016648247.
  • M. Izumi, S. Kumagai, R. Shimada, and N. Yamakawa, “Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves,” Exp. Thermal Fluid Sci., vol. 28, no. 2–3, pp. 243–248, 2004. https://doi.org/10.1016/S0894-1777(03)00046-3 DOI: 10.1016/S0894-1777(03)00046-3.
  • D. Chatain, D. Lewis, J. Baland, and W. Carter, “Numerical analysis of the shapes and energies of droplets on micropatterned substrates,” Langmuir, vol. 22, no. 9, pp. 4237–4243, 2006. DOI: 10.1021/la053146q.
  • M. Kim, and M. Kaviany, “Multi-artery heat pipe spreader: Monolayer wick receding meniscus transitions and optimal performance,” Int. J. Heat Mass Transfer, vol. 112, pp. 343–353, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.131.
  • S. Hoenig, and R. W. Bonner, “Dropwise condensation on superhydrophobic microporous wick structures”, ASME J. Heat Transfer, vol. 140, no. 7, pp. 071501–071501, 2018. DOI: 10.1115/1.4038854.
  • M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed. New York, NY, Springer, 1995. https://link.springer.com/book/10.1007%2F978-1-4612-4254-3.
  • M. C. Leverett, “Capillary behavior in porous solids,” Trans. AIME, vol. 142, no. 1, pp. 152–169, 1941. DOI: 10.2118/941152-G.
  • J. C. Melrose, “Wettability as related to capillary action in porous media,” Soc. Petrol. Eng. J., vol. 5, no. 3, pp. 259–271, 1965. DOI: 10.2118/1085-PA.
  • K. A. Brakke, “The surface evolver,” Exp. Math., vol. 1, no. 2, pp. 141–165, 1992. DOI: 10.1080/10586458.1992.10504253.
  • S. G. Liter, and M. Kaviany, “Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment,” Int. J. Heat Mass Transfer, vol. 44, no. 22, pp. 4287–4311, 2001. DOI: 10.1016/S0017-9310(01)00084-9.
  • S. Hoenig, and R. W. Bonner, “Dropwise condensation on hydrophobic microporous powder and the transition to intrapowder droplet removal,” 3rd Thermal Fluids Engineering Conference, Fort Lauderdale, FL., 2018, pp. 643–653, 2018. DOI: 10.1615/TFEC2018.ens.020457.
  • M. Knezevic, and J. M. Yeomans, “Pore emptying transition during nucleation in hydrophobic nanopores,” Soft Matter, vol. 12, pp. 3810–3819, 2016. DOI: 10.1039/C6SM00148C.
  • C. H. Lu et al., “Heat transfer model of dropwise condensation and experimental validation for surface with coating and groove at low pressure,” Heat Mass Transfer, vol. 52, no. 1, pp. 113–126, 2016. DOI: 10.1007/s00231-015-1641-0.
  • J. W. Rose, and L. R. Glicksman, “Dropwise condensation: The distribution of drop sizes,” Int. J. Heat Mass Transfer, vol. 16, no. 2, pp. 411–425, 1973. DOI: 10.1016/0017-9310(73)90068-9.
  • P. Li, X. Fan, and Z. Chen, “Numerical study on the heat transfer of micro elliptic pin fins in a rectangular minichannel,” Num. Heat Transfer, Part A: Appl., vol. 70, no. 11, pp. 1242–1252, 2016. DOI: 10.1080/10407782.2016.1230430.
  • D. Ansari, and K. Kim, “Hotspot management using a hybrid heat sink with stepped pin-fins,” Num. Heat Transfer, Part A: Appl., vol. 75, no. 6, pp. 359–380, 2019. DOI: 10.1080/10407782.2019.1599272.
  • J. Zhang, W. Li, and W. J. Minkowycz, “Numerical simulation of R410A condensation in horizontal microfin tubes,” Num. Heat Transfer, Part A: Appl., vol. 71, no. 4, pp. 361–376, 2017. DOI: 10.1080/10407782.2016.1243934.
  • H. J. Brusscher, A. W. J. Van Pelt, P. De Boer, H. P. De Jong, and J. Arends, “The effect of surface roughening of polymers on measured contact angles of liquids,” Colloids Surf., vol. 9, no. 4, pp. 319–331, 1984. DOI: 10.1016/0166-6622(84)80175-4.
  • H. Cho, D. Preston, Y. Zhu, and E. Wang, “Nanoengineered materials for liquid–vapor regime-change heat transfer,” Nat. Rev. Mater., vol. 2, pp. 16092–1-17, 2016.
  • M. Kaviany, “Boundary-layer treatment of film condensation in the presence of a solid matrix,” Int. J. Heat Mass Transfer, vol. 29, no. 6, pp. 951–954, 1986. DOI: 10.1016/0017-9310(86)90191-2.
  • D. M. Anderson et al., “Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation,” ACS Nano, vol. 6, no. 4, pp. 3262–3268, 2012. DOI: 10.1021/nn300183d.
  • S. Stylianou, and J. W. Rose, “Dropwise condensation on surfaces having different thermal conductivities,” J. Heat Transfer, vol. 102, no. 3, pp. 477–482, 1980. DOI: 10.1115/1.3244326.

  • The results suggest a transition where the liquid condensing within the wick structure does not collect in the droplets above the wick, but transports as a film within the wick [26,27]. The results indicate that this transition to decreased thermal performance is most evident for the largest powder diameters (240 and 416 µm, in our new data [16]). For these samples, the increased film thickness beneath the wick structure results in lower performance. The large diameter copper powder particles are too widely spaced to generate small departing droplets with low hysteresis, which prevents the consistent formation of droplets. The droplets experience high hysteresis while thin films form on and within the wick. The theoretical explanation of this data is provided in the following sections.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.