Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 4
244
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Numerical evaluation on single-row trenched-hole film cooling performances on turbine guide vane under engine-representative conditions

, , &
Pages 198-219 | Received 14 Mar 2019, Accepted 31 May 2019, Published online: 18 Jun 2019

References

  • D. G. Bogard, and K. A. Thole, “Gas turbine film cooling,” AIAA J. Propul. Power, vol. 22, no. 2, pp. 249–269, 2006. DOI:10.2514/1.18034.
  • S. Acharya, and Y. Kanani, “Advances in film cooling heat transfer,” Adv. Heat Transfer, vol. 49, pp. 91–156, 2017.
  • C. M. Bell, H. Hamakawa, and P. M. Ligrani, “Film cooling from shaped holes,” J. Heat Transfer, vol. 122, no. 2, pp. 224–232, 2000. DOI:10.1115/1.521484.
  • R. S. Bunker, “A review of turbine shaped film cooling technology,” J. Heat Transfer, vol. 127, no. 4, pp. 441–453, 2005. DOI:10.1115/1.1860562.
  • X. Yang, Z. Liu, and Z. P. Feng, “Numerical evaluation of novel shaped holes for enhancing film cooling performance,” J. Heat Transfer, vol. 137, no. 7, pp. 071701–071712, 2015. DOI:10.1115/1.4029817.
  • S. Khajehhasani, and B. A. Jubran, “Numerical assessment of the film cooling through novel sister-shaped single-hole schemes,” Numer. Heat Transfer, Part A, vol. 67, no. 4, pp. 414–435, 2015. DOI:10.1080/10407782.2014.937257.
  • S. Ramesh, D. G. Ramirez, S. V. Ekkad, and M. A. Alvin, “Analysis of film cooling performance of advanced tripod hole geometries with and without manufacturing features,” Int. J. Heat Mass Transfer, vol. 94, pp. 9–19, 2016. DOI:10.1016/j.ijheatmasstransfer.2015.11.033.
  • G. H. Zhang, J. Liu, B. Sundén, and G. N. Xie, “On the improvement of film cooling performance using tree-shaped network holes: A comparative study,” Numer. Heat Transfer, Part A, vol. 71, no. 9, pp. 910–927, 2017.
  • J. F. Zhou, X. J. Wang, J. Li, and H. K. Lu, “CFD analysis of mist/air cooling on a flat plate with different hole types,” Numer. Heat Transfer, Part A, vol. 71, no. 11, pp. 1123–1140, 2017. DOI:10.1080/10407782.2017.1337994.
  • R. Zhu, T. W. Simon, and G. N. Xie, “Influence of secondary hole injection angle on enhancement of film cooling effectiveness with horn-shaped or cylindrical primary holes,” Numer. Heat Transfer, Part A, vol. 74, no. 5, pp. 1207–1227, 2018. DOI:10.1080/10407782.2018.1490088.
  • J. E. Sargison, S. M. Guo, M. L. G. Oldfield, G. D. Lock, and A. J. Rawlinson, “A converging slot-hole film-cooling geometry-part 1: low-speed flat-plate heat transfer and loss,” J. Turbomach, vol. 124, no. 3, pp. 453–460, 2002. DOI:10.1115/1.1459735.
  • J. E. Sargison, S. M. Guo, M. L. G. Oldfield, G. D. Lock, and A. J. Rawlinson, “A converging slot-hole film-cooling geometry-part 2: transonic nozzle guide vane heat transfer and loss,” J. Turbomach, vol. 124, no. 3, pp. 461–471, 2002. DOI:10.1115/1.1459736.
  • J. Z. Zhang, X. D. Zhu, Y. Huang, and C. H. Wang, “Investigation on film cooling performance from a row of round-to-slot holes on flat plate,” Int. J. Therm. Sci., vol. 118, pp. 207–225, 2017. DOI:10.1016/j.ijthermalsci.2017.04.029.
  • Y. Huang, J. Z. Zhang, and C. H. Wang, “Shape-optimization of round-to-slot holes for improving film cooling effectiveness on a flat plate,” Heat Mass Transfer, vol. 54, no. 6, pp. 1741–1754, 2018. DOI:10.1007/s00231-017-2272-4.
  • R. S. Bunker, “A study of mesh-fed slot film cooling,” ASME J. Turbomach., vol. 131, no. 1, pp. 011022–011028, pages, 2011. DOI:10.1115/1.4000548.
  • X. M. Tan, J. Z. Zhang, and Q. Z. Cai, “Effects of pin-fin shapes on mesh-fed slot film cooling for a flat-plate model,” J. Thermal Sci. Eng. Appl., vol. 11, no. 3, pp. 031002–031011, 2019. DOI:10.1115/1.4041882.
  • J. E. Bruce-Black, F. T. Davidson, D. G. Bogard, and D. R. Johns, “Practical slot configurations for turbine film cooling applications,” J. Turbomach., vol. 133, no. 3, pp. 031020–031028, 2011. DOI:10.1115/1.4002413.
  • B. T. An, J. J. Liu, S. J. Zhou, X. D. Zhang, and C. Zhang, “Film cooling investigation of a slot-based diffusion hole,” ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, ASME GT2016-56175, 2016.
  • R. S. Bunker, “Film cooling effectiveness due to discrete holes within a transverse trench,” ASME Turbo Expo 2002: Power for Land, Sea, and Air, ASME GT2002-30178, 2002.
  • D. A. Kistenmacher, F. T. Davidson, and D. G. Bogard, “Realistic trench film cooling with a thermal barrier coating and deposition,” J. Turbomach., vol. 136, no. 9, pp. 091002–091012, 2014. DOI:10.1115/1.4026613.
  • Y. P. Lu, H. Nasir, and S. V. Ekkad, “Film-cooling from a row of holes embedded in transverse slots,” ASME Turbo Expo 2005: Power for Land, Sea, and Air, ASME GT2005-68598.
  • Y. P. Lu, A. Dhungel, S. V. Ekkad, and R. S. Bunker, “Effect of trench width and depth on film cooling from cylindrical holes embedded in trenches,” J. Turbomach., vol. 131, no. 1, pp. 011003–011013, 2009. DOI:10.1115/1.2950057.
  • S. K. Waye, and D. G. Bogard, “High-resolution film cooling effectiveness measurements of axial holes embedded in a transverse trench with various trench configurations,” J. Turbomach., vol. 129, no. 2, pp. 294–302, 2007. DOI:10.1115/1.2464141.
  • S. Baheri, S. P. A. Tabrizi, and B. A. Jubran, “Film cooling effectiveness from trenched shaped and compound holes,” Heat Mass Transfer, vol. 44, no. 8, pp. 989–998, 2008. DOI:10.1007/s00231-007-0341-9.
  • K. D. Lee, and W. Y. Kim, “Film cooling performance of cylindrical holes embedded in a transverse trench,” Num. Heat Transfer, vol. 65, no. 2, pp. 127–143, 2014. DOI:10.1080/10407782.2013.826106.
  • S. B. Islami, S. P. A. Tabrizi, and B. A. Jubran, “Computational investigation of film cooling from trenched holes near the leading edge of a turbine blade,” Numer. Heat Transfer, Part A, vol. 53, no. 3, pp. 308–322, 2007. DOI:10.1080/10407780701564200.
  • S. B. Islami, and B. A. Jubran, “The effect of turbulence intensity on film cooling of gas turbine blade from trenched shaped holes,” ASME Turbo Expo 2008: Power for Land, Sea, and Air, ASME GT2008-50318.
  • N. Sundaram, and K. A. Thole, “Film-cooling flowfields with trenched holes on an endwall,” ASME,” J. Turbomach., vol. 131, no. 4, pp. 041007–041010, 2009. DOI:10.1115/1.3068316.
  • K. L. Harrison, J. R. Dorrington, J. E. Dees, D. G. Bogard, and R. S. Bunker, “Turbine airfoil net heat flux reduction with cylindrical holes embedded in a transverse trench,” ASME J. Turbomach, vol. 131, no. 1, pp. 011012–011018, 2008.
  • J. E. Albert, and D. G. Bogard, “Measurements of adiabatic film and overall cooling effectiveness on a turbine vane pressure side with a trench,” J. Turbomach, vol. 135, no. 5, pp. 051007–051011, 2013. DOI:10.1115/1.4007820.
  • B. Kross, and M. Pfitzner, “Numerical and experimental investigation of the film cooling effectiveness and temperature fields behind a novel trench configuration at high blowing ratio,” ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, ASME GT2012-68125, 2012.
  • H. I. Oguntade, G. E. Andrews, A. D. Burns, D. B. Ingham, and M. Pourkashanian, “Improved trench film cooling with shaped trench outlets,” ASME J. Turbomach, vol. 135, no. 2, pp. 021009–021010, 2013. DOI:10.1115/1.4006606.
  • P. Schreivogel, B. Kross, and M. Pfitzner, “Study of an optimized trench film cooling configuration using scale adaptive simulation and infrared thermography,” ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, ASME GT2014-25144, 2014.
  • J. S. Wei, H. R. Zhu, C. L. Liu, H. Song, C. Liu, and T. Meng, “Experimental study on the film cooling characteristics of the cylindrical holes embedded in sine-wave shaped trench,” ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, ASME GT2016-56856, 2016.
  • B. L. Zhang, L. Zhang, H. R. Zhu, J. S. Wei, and Z. Y. Fu, “Numerical study on the influence of trench width on film cooling characteristics of double-wave trench,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, ASME GT2017-63552, 2017.
  • Y. Yao, J. Z. Zhang, and X. M. Tan, “Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side,” Int. Commun. Heat Mass Transfer, vol. 52, pp. 61–72, 2014. DOI:10.1016/j.icheatmasstransfer.2014.01.008.
  • K. E. Ragabm, and L. El-Gabry, “Heat transfer analysis of the surface of nonfilm-cooled and film-cooled nozzle guide vanes in transonic annular cascade,” ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, ASME GT2017-64982, 2017.
  • ANSYS Fluent 14.0 User’s Guide. ANSYS Inc., Canonsburg, PA, 2012.
  • C. R. B. Day, M. L. G. Oldfield, and G. D. Lock, “Aerodynamic performance of an annular cascade of film cooled nozzle guide vanes under engine representative conditions,” Exp. Fluids, vol. 29, no. 2, pp. 117–129, 2000. DOI:10.1007/s003489900062.
  • J. J. Liu, X. C. Lin, X. D. Zhang, and B. T. An, “Investigation on cooling effectiveness and aerodynamic loss of a turbine cascade with film cooling,” J. Therm. Sci., vol. 25, no. 1, pp. 50–59, 2016. DOI:10.1007/s11630-016-0833-3.
  • K. L. Harrison, and D. G. Bogard, “CFD Prediction of film cooling adiabatic effectiveness for cylindrical holes embedded in narrow and wide transverse trenches,” ASME Turbo Expo 2007: Power for Land, Sea, and Air, ASME GT2007-28005, 2007.
  • K. L. Harrison, and D. G. Bogard, “Comparison of RANS turbulence models for prediction of film cooling performance,” ASME Turbo Expo 2008: Power for Land, Sea, and Air, ASME GT2008-51423, 2008.
  • M. J. Ely, and B. A. Jubran, “A numerical study on improving large angle film cooling performance through the use of sister holes,” Numer. Heat Transfer, Part A, vol. 55, no. 7, pp. 634–653, 2009. DOI:10.1080/10407780902821532.
  • X. T. Liu, G. H. Zhang, B. Sunden, and G. N. Xie, “Numerical predictions of flow and heat transfer of film cooling with an internal channel roughened by crescent ribs,” Numer. Heat Transfer, Part A, vol. 74, no. 9, pp. 1539–1564, 2018. DOI:10.1080/10407782.2018.1538291.
  • R. Zhu, T. W. Simon, and G. N. Xie, “Influence on film cooling effectiveness of novel holes based on cylindrical configurations,” Numer. Heat Transfer, Part A, vol. 75, no. 7, pp. 469–488, 2019. DOI:10.1080/10407782.2019.1606629.
  • T. Arts, M. L. De Rouvroit, and A. W. Rutherford, “Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test for inviscid and viscous flow computations,” VKI Tech. Note, vol. 174, 1990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.