Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 4
321
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A two-dimensional adaptive remeshing method for solving melting and solidification problems with convection

, &
Pages 179-197 | Received 07 Mar 2019, Accepted 31 May 2019, Published online: 18 Jun 2019

References

  • X.-H. Yang, and J. Liu, “Probing the Rayleigh-Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method,” Numer. Heat Transf. A-Appl., vol. 73, no. 1, pp. 34–54, 2018. DOI:10.1080/10407782.2017.1420307.
  • I. Mirzaee, M. Charmchi, and H. Sun, “Heat, mass, and crystal growth of gan in the ammonothermal process: A numerical study,” Numer. Heat Transf. A-Appl., vol. 70, no. 5, pp. 460–491, 2016. DOI:10.1080/10407782.2016.1173470.
  • M. Izadi, Y. Belhamadia, and S. Dubljevic, “Dynamical analysis of melt flow in the bridgman process,” Ind. Eng. Chem. Res., vol. 53, no. 45, pp. 17811–17817, 2014. DOI:10.1021/ie503030z.
  • G.-L. Lei, W. Dong, M. Zheng, Z.-Q. Guo, and Y.-Z. Liu, “Numerical investigation on heat transfer and melting process of ice with different porosities,” Int. J. Heat Mass Transf., vol. 107, pp. 934–944, 2017. DOI:10.1016/j.ijheatmasstransfer.2016.11.004.
  • M. M. MacDevette, and T. G. Myers, “Nanofluids: An innovative phase change material for cold storage systems?” Int. J. Heat Mass Transf., vol. 92, pp. 550–557, 2016. DOI:10.1016/j.ijheatmasstransfer.2015.08.060.
  • C. Zhang, L. Zheng, Y. Jiang, and X. Zhang, “Unsteady natural convection heat transfer of nanofluid in an annulus with a sinusoidally heated source,” Numer. Heat Transf. A-Appl., vol. 69, no. 1, pp. 97–108, 2016. DOI:10.1080/10407782.2015.1052313.
  • S. Mousavi, M. Siavashi, and M. M. Heyhat, “Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins,” Numer. Heat Transf. A-Appl., vol. 75, no. 8, pp. 560–577, 2019. DOI:10.1080/10407782.2019.1606634.
  • K. R. Sultana, S. R. Dehghani, K. Pope, and Y. S. Muzychka, “Numerical techniques for solving solidification and melting phase change problems,” Numer. Heat Transf. B: Fund., vol. 73, no. 3, pp. 129–145, 2018. DOI:10.1080/10407790.2017.1422629.
  • T. Michalek, and T. A. Kowalewski, “Simulations of the water freezing process: Numerical benchmarks,” TASK Quart., vol. 7, no. 3, pp. 389–408, 2003.
  • N. Hannoun, V. Alexiades, and T. Z. Mai, “Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side,” Numer. Heat Transf. B, vol. 44, no. 3, pp. 253–276, 2003. DOI:10.1080/713836378.
  • N. Hannoun, V. Alexiades, and T. Z. Mai, “A reference solution for phase change with convection,” Int. J. Numer. Methods Fluids, vol. 48, no. 11, pp. 1283–1308, 2005. DOI:10.1002/fld.979.
  • F. Stella, and M. Giangi, “Melting of a pure metal on a vertical wall: Numerical simulation,” Numer. Heat Transf. A-Appl., vol. 38, pp. 193–208, 2000. DOI:10.1080/10407780050135405.
  • K. J. Evans, and D. A. Knoll, “Temporal accuracy analysis of phase change convection simulations using the JFNK-SIMPLE algorithm,” Int. J. Numer. Methods Fluids, vol. 55, no. 7, pp. 637–653, 2007. DOI:10.1002/fld.1478.
  • P. J. Frey, and F. Alauzet, “Anisotropic mesh adaptation for CFD computations,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 48–49, pp. 5068–5082, 2005. DOI:10.1016/j.cma.2004.11.025.
  • Y. Belhamadia, A. Fortin, and É. Chamberland, “Three-dimensional anisotropic mesh adaptation for phase change problems,” Comput. Phys., vol. 201, no. 2, pp. 753–770, 2004. DOI:10.1016/j.jcp.2004.06.022.
  • Y. Belhamadia, A. Fortin, and Y. Bourgault, “On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems,” J. Comput. Appl. Math., vol. 271, pp. 233–246, 2014. DOI:10.1016/j.cam.2014.04.006.
  • F. Alauzet, and A. Loseille, “A decade of progress on anisotropic mesh adaptation for computational fluid dynamics,” Comput. Aided Des., vol. 72, pp. 13– 39, 2016. 23rd International Meshing Roundtable Special Issue: Advances in Mesh Generation. DOI:10.1016/j.cad.2015.09.005.
  • R. T. Tenchev, J. A. Mackenzie, T. J. Scanlon, and M. T. Stickland, “Finite element moving mesh analysis of phase change problems with natural convection,” Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 597–612, 2005. DOI:10.1016/j.ijheatfluidflow.2005.03.003.
  • I. Danaila, R. Moglan, F. Hecht, and S. Le Masson, “A newton method with adaptive finite elements for solving phase-change problems with natural convection,” Comput. Phys., vol. 274, pp. 826–840, 2014. ISSN 0021-9991. DOI:10.1016/j.jcp.2014.06.036.
  • A. G. Zimmerman, and J. Kowalski, “Monolithic simulation of convection-coupled phase-change - Verification and reproducibility,” arXiv, vol. 03429, pp. 1–20, 1801.
  • Y. Belhamadia, A. Fortin, and É. Chamberland, “Anisotropic mesh adaptation for the solution of the stefan problem,” Comput. Phys., vol. 194, no. 1, pp. 233–255, 2004. DOI:10.1016/j.jcp.2003.09.008.
  • Y. Belhamadia, A. Kane, and A. Fortin, “An enhanced mathematical model for phase change problems with natural convection,” Int. J. Numer. Anal. Model, vol. 3, (pp. 2):192–206, 2012.
  • V. R. Voller, and C. Prakash, “A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems,” Int. J. Heat Mass Transf., vol. 30, no. 8, pp. 1709–1719, 1987. DOI:10.1016/0017-9310(87)90317-6.
  • A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf., vol. 13, no. 3, pp. 297–318, 1988. DOI:10.1080/10407788808913615.
  • F. Brezzi, and M. Fortin, Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991.
  • M. Picasso, F. Alauzet, H. Borouchaki, and P. L. George, “A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes,” SIAM J. Sci. Comput., vol. 33, no. 3, pp. 1058–1076, 2011. DOI:10.1137/100798715.
  • O. C. Zienkiewicz, and J. Z. Zhu, “The superconvergent patch recovery and a posteriori error estimate, Part I: The recovery technique,” Int. J. Numer. Methods Eng., vol. 33, no. 7, pp. 1331–1364, 1992. DOI:10.1002/nme.1620330702.
  • O. C. Zienkiewicz, and J. Z. Zhu, “The superconvergent patch recovery and a posteriori error estimate, Part II: Error estimates and adaptivity,” Int. J. Numer. Methods Eng., vol. 33, no. 7, pp. 1365–1382, 1992. DOI:10.1002/nme.1620330703.
  • Z. Zhang, and A. Naga, “A new finite element gradient recovery method: Superconvergence property,” SIAM J. Sci. Comput., vol. 26, no. 4, pp. 1192–1213, 2005.
  • E. F. D’Azevedo, and R. B. Simpson, “On optimal triangular meshes for minimizing the gradient error,” Numerische Mathematik, vol. 59, no. 1, pp. 321–348, 1991. DOI:10.1007/BF01385784.
  • R. Bois, M. Fortin, A. Fortin, and A. Couët, “High order optimal anisotropic mesh adaptation using hierarchical elements,” Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique, vol. 21, no. 1-2, pp. 72–91, 2012. DOI:10.1080/17797179.2012.702431.
  • T. Briffard, “Contributions à l’adaptation de maillages hiérarchiques,” Ph.D. dissertation, Département de mathématiques et de statistique, Université Laval, Québec, Canada, 12, 2017.
  • S. Léger, A. Fortin, C. Tibirna, and M. Fortin, “An actualized Lagrangian formulation with automatic remeshing for large deformation problems,” Int. J. Numer. Methods Eng., vol. 100, no. 13, pp. 1006–1030, 2014. DOI:10.1002/nme.4786.
  • A. Fortin, T. Briffard, and A. Garon, “A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structures,” Comput. Phys., vol. 285, pp. 100–110, 2015. DOI:10.1016/j.jcp.2015.01.010.
  • I. Dione, J. Deteix, T. Briffard, È. Chamberland, and N. Doyon, “Improved simulation of electrodiffusion in the node of Ranvier by mesh adaptation,” PLos One., vol. 11, no. 8, pp. 1–22, 2016.
  • T. A. Kowalewski, and M. Rebow, “Freezing of water in a differentially heated cubic cavity,” Int. J. Comput. Fluid D., vol. 11, no. 3–4, pp. 193–210, 1999. DOI:10.1080/10618569908940874.
  • M. Giangi, F. Stella, and T. A. Kowalewski, “Phase change problems with free convection: Fixed grid numerical simulation,” Comput. Visual Sci., vol. 2, no. 2–3, pp. 123–130, 1999. DOI:10.1007/s007910050034.
  • M. Giangi, T. A. Kowalewski, F. Stella, and E. Leonardi, “Natural convection during ice formation: Numerical simulation vs. experimental results,” Comp. Ass. Mech. Eng. Sci., vol. 7, pp. 321–342, 2000.
  • T. A. Kowalewski, and M. Rebow, “An experimental benchmark for freezing water in the cubic cavity,” in Computational Heat Transfer, CHT-97. New York: Begell House, 1997, pp. 149–156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.