Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
1,538
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Heat transfer characteristics of a dimpled/protrusioned pin fin wedge duct with different converging angles for turbine blades

, , , , &
Pages 369-392 | Received 27 Mar 2019, Accepted 07 Jun 2019, Published online: 21 Jun 2019

References

  • M. Montis, R. Ciorciari, S. Salvadori, M. Carnevate, and R. Niehuis, “Numerical prediction of cooling losses in a high-pressure gas turbine airfoil,” Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 228, no. 8, pp. 903–923, 2014. DOI:10.1177/0957650914542630.
  • W. Ba, X. Li, X. Ren, and C. Gu, “Aero-thermal coupled through-flow method for cooled turbines with new cooling model,” Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 232, no. 3, pp. 254–265, 2018. DOI:10.1177/0957650917731629.
  • J. C. Han, “Turbine blade cooling studies at Texas A&M University: 1980–2004,” J. Thermophys. Heat Transf., vol. 20, pp. 161–187, 2006. DOI:10.2514/1.15403.
  • P. M. Ligrani, M. M. Oliveira, and T. Blaskovich, “Comparison of heat transfer augmentation techniques,” AIAA J, vol. 41, no. 3, pp. 337–362, 2003. DOI:10.2514/2.1964.
  • D. E. Metzger, R. A. Berry, and J. P. Bronson, “Developing heat transfer in rectangular ducts with staggered arrays of short pin fins,” J. Heat Transf., vol. 104, no. 4, pp. 700–706, 1982. DOI:10.1115/1.3245188.
  • D. E. Metzger, Z. X. Fan, and W. B. Shepard, “Pressure loss and heat transfer through multiple rows of short pin fins”, presented at Proceedings of the Seventh International Conference, vol. 3, A83-42700 20–34, Munich, West Germany, Sep. 6–10, 1982.
  • Z. Chen, Q. Li, D. Meier, and H. J. Warnecke, “Convective heat transfer and pressure loss in rectangular ducts with drop-shaped pin fins,” Heat Mass Transf., vol. 33, no. 3, pp. 219–224, 1997. DOI:10.1007/s002310050181.
  • I. K. Choi, T. Kim, S. J. Song, and T. J. Lu, “Endwall heat transfer and fluid flow around an inclined short cylinder,” Int. J. Heat Mass Transf., vol. 50, no. 5–6, pp. 919–930, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.08.012.
  • M. K. Chyu, C. H. Yen, and S. C. Siw, “Comparison of heat transfer from staggered pin fin arrays with circular, cubic and diamond shaped elements”, ASME Paper No. GT2007-28306, 2007.
  • F. Zhou, and I. Catton, “Numerical evaluation of flow and heat transfer in plate-pin fin heat sinks with various pin cross sections,” Numer. Heat Transf., Part A, vol. 60, no. 2, pp. 107–128, 2011. DOI:10.1080/10407782.2011.588574.
  • S. C. Siw, M. K. Chyu, and M. A. Alvin, “Heat transfer enhancement of internal cooling passage with triangular and semi-circular shaped pin-fin array”, ASME Paper No. GT2012-69266, 2012.
  • P. M. Ligrani, J. L. Harrison, G. I. Mahmood, and M. L. Hill, “Flow structure due to dimple depression on a channel surface,” Phys. Fluids, vol. 13, no. 11, pp. 3442–3451, 2001. DOI:10.1063/1.1404139.
  • N. K. Burgess, and P. M. Ligrani, “Effects of dimple depth on channel Nusselt Numbers and friction factors,” J. Heat Transf., vol. 127, no. 8, pp. 839–847, 2005. DOI:10.1115/1.1994880.
  • J. Park, and P. M. Ligrani, “Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel,” Numer. Heat Transf., Part A, vol. 47, no. 3, pp. 209–232, 2005. DOI:10.1080/10407780590886304.
  • Y. Rao, Y. Feng, B. Li, and B. Weigand, “Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes,” ASME J. Heat Transf., vol. 137, no. 3, pp. 031901, 2015.
  • L. Ye, X. Yang, B. Sundén, and Z. Feng, “Effect of droplet characteristics on heat transfer of mist/air cooling in a pin-finned channel,” Numer. Heat Transf., Part A, vol. 75, no. 5, pp. 291–308, 2019. DOI:10.1080/10407782.2019.1586426.
  • D. Zhang, Q. Jing, Y. Xie, and Z. Shen, “Numerical prediction on turbine blade internal tip cooling with pin-fin and dimple/protrusion structures,” Numer. Heat Transf., Part A, vol. 70, no. 9, pp. 1021–1040, 2016. DOI:10.1080/10407782.2016.1214515.
  • Y. Rao, C. Wang, and Y. Xu, “An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths,” Int. J. Heat Mass Transf., vol. 55, no. 23–24, pp. 6723–6733, 2012. DOI:10.1016/j.ijheatmasstransfer.2012.06.081.
  • Y. Rao, Y. Xu, and C. Wang, “An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays,” Exp. Therm. Fluid Sci., vol. 38, pp. 237–247, 2012. DOI:10.1016/j.expthermflusci.2011.12.012.
  • Y. Rao, Y. Xu, and C. Wang, “A numerical study of the flow and heat transfer in the pin fin-dimple channels with various dimple depths,” J. Heat Transf., vol. 134, no. 7, pp. 071902, 2012. DOI:10.1115/1.4006098.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. Wang, “Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements,” Numer. Heat Transf., Part A, vol. 69, no. 2, pp. 209–226, 2016. DOI:10.1080/10407782.2015.1052301.
  • L. Luo, C. Wang, L. Wang, B. Sundén, and S. Wang, “Heat transfer and friction factor in a dimple-pin fin wedge duct with various dimple depth and converging angle,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 6, pp. 1954–1974, 2016. DOI:10.1108/HFF-02-2015-0043.
  • L. Luo, W. Du, S. Wang, B. Sundén, and X. Zhao, “Flow structure and heat transfer characteristics of a 90°-turned pin-finned wedge duct with dimples at different locations,” Numer. Heat Transf., Part A, vol. 74, pp. 143–162, 2018. DOI:10.1080/10407782.2017.1421373.
  • L. Luo et al., “Convergence angle and dimple shape effects on the heat transfer characteristics in a rotating dimple-pin fin wedge duct,” Numer. Heat Transf., Part A, vol. 74, no. 10, pp. 1611–1635, 2018. DOI:10.1080/10407782.2018.1543920.
  • M. E. Kithcart, and D. E. Klett, “Heat transfer and skin friction comparison of dimpled versus protrusion roughness,” J. Enhanced Heat Transf., vol. 3, no. 4, pp. 273–280, 1996. DOI:10.1615/JEnhHeatTransf.v3.i4.30.
  • S. D. Hwang, H. Kwon, and H. H. Cho, “Heat transfer with dimple/protrusion arrays in a rectangular duct with a low Reynolds number range,” Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 916–926, 2008. DOI:10.1016/j.ijheatfluidflow.2008.01.004.
  • J. E. Kim, J. H. Doo, M. Y. Ha, H. S. Yoon, and C. Son, “Numerical study on characteristic of flow and heat transfer in a cooling passage with protrusion-in-dimple surface,” Int. J. Heat Mass Transf., vol. 55, no. 23-24, pp. 7257–7267, 2012. DOI:10.1016/j.ijheatmasstransfer.2012.07.052.
  • G. Xie, J. Liu, P. M. Ligrani, and W. Zhang, “Numerical analysis of flow structure and heat transfer characteristics in square channels with different internal-protruded dimple geometrics,” Int. J. Heat Mass Transf., vol. 67, pp. 81–91, 2013. DOI:10.1016/j.ijheatmasstransfer.2013.07.094.
  • Y. Xie, H. Qu, and D. Zhang, “Numerical investigation of flow and heat transfer in rectangular channel with teardrop dimple/protrusion,” Int. J. Heat Mass Transf., vol. 84, pp. 486–496, 2015. DOI:10.1016/j.ijheatmasstransfer.2015.01.055.
  • S. D. Hwang, H. G. Kwon, and H. H. Cho, “Local heat transfer and thermal performance on periodically dimple-protrusion patterned wall for compact heat exchanger,” Energy, vol. 35, no. 12, pp. 5357–5364, 2010. DOI:10.1016/j.energy.2010.07.022.
  • J. Lan, Y. Xie, and D. Zhang, “Heat transfer enhancement in a rectangular channel with the combination of ribs, dimples and protrusions”, ASME Paper No. GT2011-46031, 2011.
  • L. Luo, W. Du, F. Wen, S. Wang, and Z. Zhao, “Convergence angles effect on heat transfer characteristics in a wedged duct with dimples/protrusions,” Heat Transf. Res., vol. 48, no. 14, pp. 1237–1262, 2017. DOI:10.1615/HeatTransRes.2017017578.
  • L. Luo, D. Qiu, W. Du, B. Sundén, Z. Wang, and X. Zhang, “Surface temperature reduction by using dimples/protrusions in a realistic turbine blade trailing edge,” Numer. Heat Transf., Part A, vol. 74, no. 5, pp. 1265–1283, 2018. DOI:10.1080/10407782.2018.1515333.
  • L. Luo, H. Yan, W. Du, S. Wang, C. Li, and X. Zhang, “Flow structure and heat transfer characteristics of a rectangular channel with pin fins and dimples with different shapes,” ASME J. Thermal Sci. Eng. Appl., vol. 11, no. 2, pp. 024501, 2018.vol DOI:10.1115/1.4041598.
  • L. Luo, W. Du, S. Wang, W. Wu, and X. Zhang, “Multi-objective optimization of the dimple/protrusion channel with pin fins for heat transfer enhancement,” Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 2, pp. 790–813, 2019. DOI:10.1108/HFF-05-2018-0194.
  • ANSYS CFX, Reference Guide, Release 15, 2013.
  • ANSYS ICEM CFD, Reference Guide, Release 15, 2013.
  • W. Zhou, Y. Rao, and H. Hu, “An experimental investigation on the characteristics of turbulent boundary layer flows over a dimpled surface,” ASME J. Fluid Eng., vol. 138, no. 2, pp. 021204, 2016.
  • S. Wang, W. Du, L. Luo, D. Qiu, X. Zhang, and S. Li, “Flow structure and heat transfer characteristic of a dimpled wedge channel with a bleed hole in dimple at different orientations and location,” Int. J. Heat Mass Transf., vol. 117, pp. 1216–1230, 2018. DOI:10.1016/j.ijheatmasstransfer.2017.10.087.
  • M. A. Elyyan, and D. K. Tafti, “Effect of Coriolis forces in a rotating channel with dimples and protrusions,” Int. J. Heat Fluid Flow, vol. 31, no. 1, pp. 1–18, 2010. DOI:10.1016/j.ijheatfluidflow.2009.10.002.
  • B. Sundén, Introduction to Heat Transfer. Southampton, UK: WIT Press, 2012.