Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
955
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

A numerical framework for heat transfer and pressure loss estimation of matrix cooling geometry in stationary and rotational states

, , &
Pages 348-368 | Received 17 Mar 2019, Accepted 07 Jun 2019, Published online: 18 Jun 2019

References

  • J. C. Han, Y. M. Zhang, and C. P. Lee, “Influence of surface heat flux ratio on heat transfer augmentation in square channels with parallel, crossed, and V-shaped angled ribs”, ASME J. Turbomach., vol. 114, no. 4, pp. 872–880, 1992. DOI:10.1115/1.2928042.
  • G. Laschet, S. Rex, D. Bohn, and N. Moritz, “3-D conjugate analysis of cooled coated plates and homogenization of their thermal properties,” Numerical Heat Transfer: Part A: Appl., vol. 42, no. 1-2, pp. 91–106, 2002. DOI:10.1080/10407780290059440.
  • P. R. Chandra, C. R. Alexander, and J. C. Han, “Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls,” Int. J. Heat Mass Transf., vol. 46, no. 3, pp. 481–495, 2003. DOI:10.1016/S0017-9310(02)00297-1.
  • S. Y. Won, G. I. Mahmood, and P. M. Ligrani, “Flow structure and local Nusselt number variations in a channel with angled crossed-rib turbulators,” Int. J. Heat Mass Transf., vol. 46, no. 17, pp. 3153–3166, 2003. DOI:10.1016/S0017-9310(03)00103-0.
  • R. S. Bunker, “Lattice work (vortex) cooling effectiveness part 1: Stationary channel experiments,” Power Land, Sea Air. ASME Turbo Expo GT2004-54157, Vienna, Austria, 2004.
  • S. Acharya, F. Zhou, J. Lagrone, G. Mahmood, and R. Bunker, “Latticework (Vortex) cooling effectiveness part 2: rotating channel experiments,” ASME Turbo Expo, Vienna, Austria, June 14–17, ASME Paper No. GT2004-53983, 2004.
  • S. Acharya, F. Zhou, J. Lagrone, G. Mahmood, and R. Bunker, “Latticework (vortex) cooling effectiveness: rotating channel experiments”, ASME J. Turbomach., vol. 127, no. 3, pp. 471–478, 2005. DOI:10.1115/1.1860381.
  • K. Saha, S. H. Guo, S. Acharya, and C. Nakamata, “Heat transfer and pressure measurements in a lattice-cooled trailing edge of a turbine airfoil,” Power Land Sea Air, ASME Turbo Expo GT2008-51324, Berlin, Germany, 2008.
  • P. G. Siddappa, R. S. S. Reddy, and U. Mallikarjun, “Matrix cooling configuration: a computational study,” Int. J. Mech. Prod. Eng., vol. 2, no. 9, pp. 1–5, 2014.
  • C. Carcasci B. Facchini, M. Pievaroli, L. Tarchi, A. Ceccherini, and L. Innocenti, “Heat transfer and pressure loss measurements of matrix cooling geometries for gas turbine airfoils,” ASME J. Turbomachinery, vol. 136, no. 12, pp. 121005 (1–8), 2014.
  • Y. Rao and S. Zang, “Flow and heat transfer characteristics in latticework cooling channels with dimple vortex generators,” ASME J. Turbomach., vol. 136, no. 2, pp. 021017 (1–10), 2014.
  • I. Oh, K. Kim, D. Lee, J. Park, and H. Cho, “Local heat/mass transfer and friction loss measurement in a rotating matrix cooling channel,” ASME J. Heat Transfer, vol. 134, no. 1, pp. 011901 (1–9), 2011.
  • K. Saha, S. Acharya, and C. Nakamata, “Heat transfer enhancement and thermal performance of lattice structures for internal cooling of airfoil trailing edges,” ASME J. Thermal Sci. Eng. Appl., vol. 5, no. 1, pp. 011001 (1–9), 2013.
  • C. Carcasci, B. Facchini, M. Pievaroli, L. Tarchi, A. Ceccherini, and L. Innocenti, “Heat transfer and pressure drop measurements on rotating matrix cooling geometries for airfoil trailing edges,” ASME Turbo Expo. Montréal, Canada, June 15–19, ASME Paper No. GT2015-42594, 2015.
  • E. Tian, H. Ya-Ling, and W. Tao, “Numerical simulation of finned tube bank across a staggered circular-pin-finned tube bundle,” Numer. Heat Transfer Part A Appl., vol. 68, no. 7, pp. 737–760, 2015. DOI:10.1080/10407782.2015.1012855.
  • J. Zhou, X. Wang, J. Li, and H. Lu, “CFD analysis of mist/air film cooling on a flat plate with different hole types,” Numer. Heat Transf. A Appl., vol. 71, no. 11, pp. 1123–1140, 2017. DOI:10.1080/10407782.2017.1337994.
  • Y. Zhang and A. Faghri, “Numerical simulation of condensation on a capillary grooved structure,” Numer. Heat Transfer A Appl., vol. 39, no. 3, pp. 227–243, 2001. DOI:10.1080/104077801300006562.
  • A. Azzi, M. Abidat, B. A. Jubran, and G. S. Theodoridis, “Film cooling predictions of simple and compound angle injection from one and two staggered rows,” Numer. Heat Transfer A Appl., vol. 40, no. 3, pp. 273–294, 2001. DOI:10.1080/10407782.2001.10120637.
  • M. R. Safaei, H. Togun, K. Vafai, S. N. Kazi, and A. Badarudin, “Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids,” Numer. Heat Transfer A Appl., vol. 66, no. 12, pp. 1321–1340, 2014. DOI:10.1080/10407782.2014.916101.
  • L. Wang and B. Sunden, “Experimental investigation of local heat transfer in a square duct with continues and truncated ribs,” Exp. Heat Transfer, vol. 18, no. 3, pp. 179–197, 2005. DOI:10.1080/08916150590953397.
  • W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of Heat Transfer. New York, NY: McGraw-Hill, 1998.
  • J. Han, J. S. Park, and C. Lei, "Heat transfer and pressure drop in blade cooling channels with turbulence promoters.” Technical Report, NASA, Washington, DC, 1984.
  • J. Han and J. S. Park, “Developing heat transfer in rectangular channels with rib turbulators,” Int. J. Heat Mass Transf., vol. 31, no. 1, pp. 183–195, 1988. DOI:10.1016/0017-9310(88)90235-9.
  • G. Croce, H. Beaugendre, and W. Habashi, “Numerical simulation of heat transfer in mist flow,” Numer. Heat Transfer A Appl., vol. 42, no. 1–2, pp. 139–152, 2002. DOI:10.1080/10407780290059477.