Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
209
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Lattice-Boltzmann simulations of flow past stationary particles in a channel

, &
Pages 281-300 | Received 29 Mar 2019, Accepted 07 Jun 2019, Published online: 24 Jun 2019

References

  • S. Elghobashi, “On predicting particle-laden turbulent flows,” Appl. Sci. Res., vol. 52, no. 4, pp. 309–329, 1994. DOI: 10.1007/BF00936835.
  • K. Hutter, “Geophysical granular and particle-laden flows: review of the field,” Philos. Trans. R. Soc. Lond. A, vol. 363, no. 1832, pp. 1497–1505, 2005. DOI: 10.1098/rsta.2005.1591.
  • M. Maxey, “Simulation methods for particulate flows and concentrated suspensions,” Annu. Rev. Fluid Mech., vol. 49, no. 1, pp. 171–193, 2017. DOI: 10.1146/annurev-fluid-122414-034408.
  • J. G. M. Kuerten, “Point-particle DNS and LES of particle-laden turbulent flow – a state-of-the-art review,” Flow Turbul. Combust., vol. 97, no. 3, pp. 689–713, 2016. DOI: 10.1007/s10494-016-9765-y.
  • S. Balachandar and J. K. Eaton, “Turbulent dispersed multiphase flow,” Annu. Rev. Fluid Mech., vol. 42, no. 1, pp. 111–133, 2010. DOI: 10.1146/annurev.fluid.010908.165243.
  • A. S. Jebakumar and J. Abraham, “Comparison of the structure of computed and measured particle-laden jets for a wide range of stokes numbers,” Int. J. Heat Mass Transf., vol. 97, pp. 779–786, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.02.074.
  • R. Delannay, A. Valance, A. Mangeney, O. Roche, and P. Richard, “Granular and particle-laden flows: from laboratory experiments to field observations,” J. Phys. D: Appl. Phys., vol. 50, no. 5, pp. 053001, 2017. DOI: 10.1088/1361-6463/50/5/053001.
  • S. Savithiri, P. Dhar, A. Pattamatta, and S. K. Das, “Particle fluid interactivity reduces buoyancy-driven thermal transport in nanosuspensions: a multi-component lattice Boltzmann approach,” Numer. Heat Transf. A: Appl., vol. 70, no. 3, pp. 260–281, 2016. DOI: 10.1080/10407782.2016.1173458.
  • U. Kumar and V. K. Agarwal, “Biomass gasification in a fluidized bed reactor: hydrodynamics and heat transfer studies,” Numer. Heat Transf. A: Appl., vol. 70, no. 5, pp. 513–531, 2016. DOI: 10.1080/10407782.2016.1177340.
  • J. Lee and G. Son, “Stationary contact line formation and particle deposition in dip coating,” Numer. Heat Transf. A: Appl., vol. 70, no. 2, pp. 132–144, 2016. DOI: 10.1080/10407782.2016.1173455.
  • S. L. Lee, R. Saidur, M. F. M. Sabri, and T. K. Min, “Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation,” Numer. Heat Transf. A: Appl., vol. 69, no. 9, pp. 996–1013, 2016. DOI: 10.1080/10407782.2015.1109369.
  • S. Tenneti and S. Subramaniam, “Particle-resolved direct numerical simulation for gas-solid flow model development,” Annu. Rev. Fluid Mech., vol. 46, pp. 199–230, 2014. DOI: 10.1146/annurev-fluid-010313-141344.
  • A. S. Jebakumar, K. N. Premnath, and J. Abraham, “Lattice Boltzmann method simulations of Stokes number effects on particle trajectories in a wall-bounded flow,” Comput. Fluids, vol. 124, pp. 208–219, 2016. DOI: 10.1016/j.compfluid.2015.07.020.
  • A. S. Jebakumar, K. N. Premnath, V. Magi, and J. Abraham, “Fully-resolved direct numerical simulations of particle motion in a turbulent channel flow with the lattice-Boltzmann method,” Comput. Fluids, vol. 179, pp. 238–247, 2019. DOI: 10.1016/j.compfluid.2018.11.003.
  • L. Zhang, A. S. Jebakumar, and J. Abraham, “Lattice Boltzmann method simulations of Stokes number effects on particle motion in a channel flow,” Phys. Fluids, vol. 28, no. 6, pp. 063306. DOI: 10.1063/1.4953800.
  • P. Bagchi and S. Balachandar, “Response of the wake of an isolated particle to an isotropic turbulent flow,” J. Fluid Mech., vol. 518, pp. 95–123, 2004.DOI: 10.1017/S0022112004000989.
  • A. Merle, D. Legendre, and J. Magnaudet, “Forces on a high-Reynolds-number spherical bubble in a turbulent flow,” J. Fluid Mech., vol. 532, pp. 53–62, 2005. DOI: 10.1017/S0022112005004180.
  • L. Zeng, S. Balachandar, P. Fischer, and F. Najjar, “Interactions of a stationary finite-sized particle with wall turbulence,” J. Fluid Mech., vol. 594, pp. 271–305, 2008. DOI: 10.1017/S0022112007009056.
  • L.-P. Wang, C. Peng, Z. Guo, and Z. Yu, “Lattice Boltzmann simulation of particle-laden turbulent channel flow,” Comput. Fluids, vol. 124, pp. 226–236, 2016. DOI: 10.1016/j.compfluid.2015.07.008.
  • K. Luo, J. Tan, Z. Wang, and J. Fan, “Particle-resolved direct numerical simulation of gas solid dynamics in experimental fluidized beds,” AIChE J., vol. 62, no. 6, pp. 1917–1932, 2016. DOI: 10.1002/aic.
  • T. M. Burton and J. K. Eaton, “Fully resolved simulations of particle-turbulence interaction,” J. Fluid Mech., vol. 545, no. 1, pp. 67, 2005. DOI: 10.1017/S0022112005006889.
  • D. D’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions,” Philos. Trans. R. Soc. Lond. A, vol. 360, no. 1792, pp. 437–451, 2002.
  • K. N. Premnath and J. Abraham, “Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow,” Comput. Phys., vol. 224, no. 2, pp. 539–559, 2007. DOI: 10.1016/j.jcp.2006.10.023.
  • M. McCracken and J. Abraham, “Multiple-relaxation-time lattice-Boltzmann model for multiphase flow,” Phys. Rev. E, vol. 71, no. 3, pp. 36701, 2005. DOI: 10.1103/PhysRevE.71.036701.
  • M. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a Boltzmann-lattice fluid with boundaries,” Phys. Fluids, vol. 13, no. 11, pp. 3452, 2001. DOI: 10.1063/1.1399290.
  • P. Lallemand and L.-S. Luo, “Lattice Boltzmann method for moving boundaries,” Comput. Phys., vol. 184, no. 2, pp. 406–421, 2003. DOI: 10.1016/S0021-9991(02)00022-0.
  • M. Lee and R. D. Moser, “Direct numerical simulation of turbulent channel flow up to Reτ≈5200,” J. Fluid Mech., vol. 774, pp. 395–415. DOI: 10.1063/1.869966.
  • K. N. Premnath, M. J. Pattison, and S. Banerjee, “Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows,” Phys. Rev. E, vol. 79, no. 2, pp. 1–19, 2009. DOI: 10.1103/PhysRevE.79.026703.
  • A. S. Jebakumar, V. Magi, and J. Abraham, “Lattice-Boltzmann simulations of particle transport in a turbulent channel flow,” Int. J. Heat Mass Transf., vol. 127, pp. 339–348, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.107.
  • H. Zhao, A. Wei, K. Luo, and J. Fan, “Numerical study of turbulent boundary-layer flow induced by a sphere above a flat plate, simulation and modeling methodologies, technologies and applications,” Adv. Intell. Syst. Comput., vol. 256, no. 256, pp. 239–252, 2014.DOI: 10.1007/978-3-319-03581-9.
  • H. Zhao, X. Liu, D. Li, A. Wei, K. Luo, and J. Fan, “Vortex dynamics of a sphere wake in proximity to a wall,” Int. J. Multiphase Flow, vol. 79, pp. 88–106, 2016. DOI: 10.1016/j.ijmultiphaseflow.2015.10.005.
  • L. Zeng, S. Balachandar, and F. Najjar, “Wake response of a stationary finite-sized particle in a turbulent channel flow,” Int. J. Multiphase Flow, vol. 36, no. 5, pp. 406–422, 2010. DOI: 10.1016/j.ijmultiphaseflow.2010.01.001.
  • I. Rodriguez, R. Borell, O. Lehmkuhl, C. D. Perez Segarra, and A. Oliva, “Direct numerical simulation of the flow over a sphere at Re = 3700,” J. Fluid Mech., vol. 679, no. 2011, pp. 263–287, 2011. DOI: 10.1017/jfm.2011.136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.