Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 5
204
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Comparison between five stochastic global search algorithms for optimizing thermoelectric generator designs

&
Pages 323-347 | Received 20 Feb 2019, Accepted 07 Jun 2019, Published online: 20 Jun 2019

References

  • L. T. Biegler, and I. E. Grossmann, “Retrospective on optimization,” Comput. Chem. Eng, vol. 28, no. 8, pp. 1169–1192, 2004. DOI:10.1016/j.compchemeng.2003.11.003.
  • L. Rios, and N. Sahinidis, “Derivative-free optimization: a review of algorithms and comparison of software implementations,” J. Glob. Optim., vol. 56, no. 3, pp. 1247–1293, 2013. DOI:10.1007/s10898-012-9951-y.
  • P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan, “Mixed-integer nonlinear optimization*†,” Acta Numer, vol. 22, pp. 1–131, 2013. DOI:10.1017/S0962492913000032.
  • C. Blum, and A. Roli, “Metaheuristics in combinatorial optimization: Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, 2003. DOI:10.1145/937503.937505.
  • C. Oguz and M. F. Ercan, “A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks,” J. Sched., vol. 8, no. 4, pp. 323–351, 2005. DOI:10.1007/s10951-005-1640-y.
  • A. C. Zecchin, A. R. Simpson, H. R. Maier, and J. B. Nixon, “Parametric study for an ant algorithm applied to water distribution system optimization,” IEEE Trans. Evol. Comput., vol. 9, no. 2, pp. 175–191, 2005. DOI:10.1109/TEVC.2005.844168.
  • S. Paterlini and T. Krink, “Differential evolution and particle swarm optimisation in partitional clustering,” Comput. Stat. Data Anal., vol. 50, no. 5, pp. 1220–1247, 2006. DOI:10.1016/j.csda.2004.12.004.
  • M. Birattari, Tuning Metaheuristics: A Machine Learning Perspective. Berlin, Heidelberg: Springer, 2009.
  • Z. Yuan, M. A. Montes de Oca, M. Birattari, and T. Stützle, “Continuous optimization algorithms for tuning real and integer parameters of swarm intelligence algorithms,” Swarm. Intell., vol. 6, no. 1, pp. 49–75, 2012. DOI:10.1007/s11721-011-0065-9.
  • R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Struct. Multidiscip. Optim., vol. 26, no. 6, pp. 369–395, 2004. DOI:10.1007/s00158-003-0368-6.
  • I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems,” Struct. Optim., vol. 14, no. 1, pp. 63–69, 1997. DOI:10.1007/BF01197559.
  • V. Beiranvand, W. Hare and Y. Lucet, “Best practices for comparing optimization algorithms,” Optim. Eng., vol. 18, no. 4, pp. 815–848, 2017. DOI:10.1007/s11081-017-9366-1.
  • M. Allyson-Cyr, Optimisation Sous Contrainte D’un Générateur Thermoélectrique Pour la Récupération de Chaleur Par Différents Algorithmes Heuristiques. Québec, Canada: Mémoire, Université Laval, 2018. (M.Sc. Dissertation, in French).
  • J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. 1st MIT press ed. Cambridge, MA: MIT Press, 1992.
  • L. Gosselin, M. Tye-Gingras, and F. Mathieu-Potvin, “Review of utilization of genetic algorithms in heat transfer problems,” Int. J. Heat Mass Transf., vol. 52, no. 9–10, pp. 2169–2188, 2009. DOI:10.1016/j.ijheatmasstransfer.2008.11.015.
  • W. Huang and H. N. Lam, “Using genetic algorithms to optimize controller parameters for HVAC systems,” Energy Build, vol. 26, no. 3, pp. 277–282, 1997. DOI:10.1016/S0378-7788(97)00008-X.
  • V. K. Mishra, S. C. Mishra, and D. N. Basu, “Simultaneous estimation of parameters in analyzing porous medium combustion—assessment of seven optimization tools,” Numer. Heat Transf. Part Appl., vol. 71, no. 6, pp. 666–676, 2017. DOI:10.1080/10407782.2016.1139908.
  • S. Bélanger and L. Gosselin, “Multi-objective genetic algorithm optimization of thermoelectric heat exchanger for waste heat recovery,” Int. J. Energy Res., vol. 36, no. 5, pp. 632–642, 2012. DOI:10.1002/er.1820.
  • S. S. Rao and Y. Xiong, “A hybrid genetic algorithm for mixed-discrete design optimization,” J. Mech. Des., vol. 127, no. 6, pp. 1100–2004, 2005. DOI:10.1115/1.1876436.
  • K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, “A real coded genetic algorithm for solving integer and mixed integer optimization problems,” Appl. Math. Comput., vol. 212, no. 2, pp. 505–518, 2009. DOI:10.1016/j.amc.2009.02.044.
  • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002. DOI:10.1109/4235.996017.
  • J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings IEEE International Conference on Neural Networks, 1995. 1995, vol. 4, p. 1942–1948.
  • C. Guo, J. Hu, B. Ye, and Y. Cao, “Swarm intelligence for mixed-variable design optimization,” J. Zhejiang Univ. Sci. A, vol. 5, no. 7, pp. 851–860, 2004. DOI:10.1631/jzus.2004.0851.
  • A. P. Silva, M. A. S. S. Ravagnani, E. C. Biscaia, and J. A. Caballero, “Optimal heat exchanger network synthesis using particle swarm optimization,” Optim. Eng, vol. 11, no. 3, pp. 459–470, 2010. DOI:10.1007/s11081-009-9089-z.
  • M. Yousefi, M. Yousefi, R. P. Martins Ferreira, and A. N. Darus, “A swarm intelligent approach for multi-objective optimization of compact heat exchangers,” Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., vol. 231, no. 2, pp. 164–171, 2017. DOI:10.1177/0954408915581995.
  • A. Ibrahim, S. Rahnamayan, M. Vargas Martin, and B. Yilbas, “Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics,” Energy, vol. 77, pp. 305–317, 2014. DOI:10.1016/j.energy.2014.08.041.
  • D. R. O. G.,L. A. L. de Almeida, and O. A. C. Vilcanqui, “Parameter identification of thermoeletric modules using particle swarm optimization,” in 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. 2015, p. 812–817.
  • Udayraj, K. Mulani, P. Talukdar, A. Das, and R. Alagirusamy, “Performance analysis and feasibility study of ant colony optimization, particle swarm optimization and cuckoo search algorithms for inverse heat transfer problems,” Int. J. Heat Mass Transf., vol. 89, p. 359–378, 2015.
  • A. Bangian-Tabrizi and Y. Jaluria, “A study of transient wall plume and its application in the solution of inverse problems,” Numer. Heat Transf. Part Appl., vol. 75, no. 3, pp. 149–166, 2019. DOI:10.1080/10407782.2019.1580958.
  • S. He, E. Prempain, and Q. H. Wu, “An improved particle swarm optimizer for mechanical design optimization problems,” Eng. Optim., vol. 36, no. 5, pp. 585–605, 2004. DOI:10.1080/03052150410001704854.
  • J. Clarke, L. McLay, and J. T. McLeskey, “Comparison of genetic algorithm to particle swarm for constrained simulation-based optimization of a geothermal power plant,” Adv. Eng. Inform., vol. 28, no. 1, pp. 81–90, 2014. DOI:10.1016/j.aei.2013.12.003.
  • A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba, “SMPSO: A new PSO-based metaheuristic for multi-objective optimization”, in 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), 2009, p. 66–73.
  • M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–73, 2002. DOI:10.1109/4235.985692.
  • Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 39, no. 6, pp. 1362–1381, 2009.
  • R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory. in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS ’95, 1995, p. 39–43.
  • M. Dorigo, Optimization, learning and natural algorithms, PhD thesis Politec. Milano Italy, 1992.
  • M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. Life, vol. 5, no. 2, pp. 137–172, 1999.
  • E. Hetmaniok, D. Słota, and A. Zielonka, “Determination of the heat transfer coefficient by using the ant colony optimization algorithm,” Parall. Process. Appl. Math., vol. 7203, pp. 470–479, 2011.
  • B. Zhang, H. Qi, Y.-T. Ren, S.-C. Sun, and L.-M. Ruan, “Application of homogenous continuous Ant Colony Optimization algorithm to inverse problem of one-dimensional coupled radiation and conduction heat transfer,” Int. J. Heat Mass Transf., vol. 66, pp. 507–516, 2013. DOI:10.1016/j.ijheatmasstransfer.2013.07.054.
  • I. C. Silva, F. R. do Nascimento, E. J. de Oliveira, A. L. M. Marcato, L. W. de Oliveira, and J. A. Passos Filho, “Programming of thermoelectric generation systems based on a heuristic composition of ant colonies,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 134–145, 2013. DOI:10.1016/j.ijepes.2012.07.036.
  • B. Zhang, H. Qi, S.-C. Sun, L.-M. Ruan, and H.-P. Tan, “A novel hybrid ant colony optimization and particle swarm optimization algorithm for inverse problems of coupled radiative and conductive heat transfer,” Therm. Sci, vol. 20, no. 2, pp. 461–472, 2016. DOI:10.2298/TSCI131124023Z.
  • H. Qi, B. Zhang, S. Gong, and L.-M. Ruan, “Simultaneous retrieval of multiparameters in a frequency domain radiative transfer problem using an improved pdf-based aco algorithm,” Numer. Heat Transf. Part Appl., vol. 69, no. 7, pp. 727–747, 2016. DOI:10.1080/10407782.2015.1069677.
  • K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, 2008. DOI:10.1016/j.ejor.2006.06.046.
  • T. Liao, K. Socha, M. A. M. de Oca, T. Stützle, and M. Dorigo, “Ant colony optimization for mixed-variable optimization problems,” IEEE Trans. Evol. Comput., vol. 18, no. 4, pp. 503–518, 2014. DOI:10.1109/TEVC.2013.2281531.
  • A. E. L. Rivas and L. A. G. Pareja, “Coordination of directional overcurrent relays that uses an ant colony optimization algorithm for mixed-variable optimization problems,” Int. J. Heat Mass Transf., vol. 66, pp. 1–6, 2017.
  • R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems,” Comput.-Aided Des., vol. 43, no. 3, pp. 303–315, 2011. DOI:10.1016/j.cad.2010.12.015.
  • R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems,” Inf. Sci., vol. 183, no. 1, pp. 1–15, 2012. DOI:10.1016/j.ins.2011.08.006.
  • R. V. Rao, V. J. Savsani, and J. Balic, “Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems,” Eng. Optim., vol. 44, no. 12, pp. 1447–1462, 2012. DOI:10.1080/0305215X.2011.652103.
  • R. V. Rao and V. Patel, “Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm,” Appl. Math. Model., vol. 37, no. 3, pp. 1147–1162, 2013. DOI:10.1016/j.apm.2012.03.043.
  • R. Venkata Rao, and V. Patel, “Multi-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithm,” Eng. Appl. Artif. Intell., vol. 26, no. 1, pp. 430–445, 2013. DOI:10.1016/j.engappai.2012.02.016.
  • R. V. Rao and K. C. More, “Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm,” Energy, vol. 80, pp. 535–544, 2015. DOI:10.1016/j.energy.2014.12.008.
  • F. Zou, L. Wang, X. Hei, D. Chen, and B. Wang, “Multi-objective optimization using teaching-learning-based optimization algorithm,” Eng. Appl. Artif. Intell., vol. 26, no. 4, pp. 1291–1300, 2013. DOI:10.1016/j.engappai.2012.11.006.
  • R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997. DOI:10.1023/A:1008202821328.
  • B. V. Babu and S. A. Munawar, “Differential evolution strategies for optimal design of shell-and-tube heat exchangers,” Chem. Eng. Sci., vol. 62, no. 14, pp. 3720–3739, 2007. DOI:10.1016/j.ces.2007.03.039.
  • J. Chen, G. Cui, and H. Duan, “Multipopulation differential evolution algorithm based on the opposition-based learning for heat exchanger network synthesis,” Numer. Heat Transf. Part Appl., vol. 72, no. 2, pp. 126–140, 2017. DOI:10.1080/10407782.2017.1358991.
  • F. Neri and V. Tirronen, “Recent advances in differential evolution: a survey and experimental analysis,” Artif. Intell. Rev., vol. 33, no. 1-2, pp. 61–106, 2010. DOI:10.1007/s10462-009-9137-2.
  • S. Qian, Y. Ye, Y. Liu, and G. Xu, “An improved binary differential evolution algorithm for optimizing PWM control laws of power inverters,” Optim. Eng., vol. 19, no. 2, pp. 271–296, 2018. DOI:10.1007/s11081-017-9354-5.
  • S. Kukkonen and J. Lampinen, “GDE3: the third evolution step of generalized differential evolution,” 2005 IEEE Congr. Evol. Comput., vol. 1, pp. 443–450, 2005.
  • M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützle, “The irace package: Iterated racing for automatic algorithm configuration,” Oper. Res. Perspect., vol. 3, pp. 43–58, 2016. DOI:10.1016/j.orp.2016.09.002.
  • F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for general algorithm configuration,” in Learning and Intelligent Optimization. vol. 6683, C. A. C. Coello, Éd. Berlin, Heidelberg: Springer, 2011, p. 507–523.
  • C. Preechakul and S. Kheawhom, “Modified genetic algorithm with sampling techniques for chemical engineering optimization,” J. Ind. Eng. Chem., vol. 15, no. 1, pp. 110–118, 2009. DOI:10.1016/j.jiec.2008.09.003.
  • R. K. Ursem and P. Vadstrup, “Parameter identification of induction motors using stochastic optimization algorithms,” Appl. Soft Comput., vol. 4, no. 1, pp. 49–64, 2004. DOI:10.1016/j.asoc.2003.08.002.
  • J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems,” in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004, vol. 2, p. 1980–1987.
  • K. Deb and S. Jain, “Running performance metrics for evolutionary multi-objective optimization,” Comput. Aided Des., (CAD), vol. 43, no. 3, pp. 303–315, 2002.
  • A. Farhang-Mehr and S. Azarm, “Diversity assessment of Pareto optimal solution sets: an entropy approach,” in Proceedings of the 2002 Congress on Evolutionary Computation, 2002. CEC ’02, 2002, vol. 1, p. 723–728.
  • L. F. F. Miguel, L. F. Fadel Miguel, and R. H. Lopez, “A firefly algorithm for the design of force and placement of friction dampers for control of man-induced vibrations in footbridges,” Optim. Eng., vol. 16, no. 3, pp. 633–661, 2015. DOI:10.1007/s11081-014-9269-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.