Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 6
435
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Effect of thermal boundary condition on forced convection from circular cylinders

&
Pages 420-437 | Received 20 Nov 2018, Accepted 26 Jun 2019, Published online: 24 Jul 2019

References

  • B. P. Bhattarai et al., “Improvement of transmission line ampacity utilization by weather-based dynamic line rating,” Ieee Trans. Power Del., vol. 33, no. 4, pp. 1853–1863, 2018. DOI:10.1109/TPWRD.2018.2798411.
  • S. Sanitjai, and R. Goldstein, “Forced convection heat transfer from a circular cylinder in crossflow to air and liquids,” Int. J. Heat Mass Transf., vol. 47, no, no. 22, pp. 4795–4805, 2004. DOI:10.1016/j.ijheatmasstransfer.2004.05.012.
  • A. S. Mujumdar, “The effect of free-stream turbulence on heat transfer from cylinders in cross-flow,” doctoral dissertation, McGill University, Montreal, Canada, 1971.
  • V. T. Morgan, “The overall convective heat transfer from smooth circular cylinders,” Advances Heat Transfer, vol. 11, pp. 199–264, 1975.
  • P. Richardson, “Heat and mass transfer in turbulent separated flows,” Chem. Eng. Sci., vol. 18, no. 3, pp. 149–155, 1963. DOI:10.1016/0009-2509(63)85001-0.
  • M. Abdelhady, and D. H. Wood, “Evaluating the impact of free-stream turbulence on convective cooling of overhead conductors using large eddy simulations,” Trans. ASME J. Energy Resour. Technol., vol. 141, no. 6, pp. 062010, 2019. DOI:10.1115/1.4042401.
  • E. Griffiths, and J. Awbery, “Heat transfer between metal pipes and a stream of air,” Proc. Inst. Mech. Eng., vol. 125, no. 1, pp. 319–382, 1933.
  • H. C. Perkins, and G. Leppert, “Forced convection heat transfer from a uniformly heated cylinder,” Trans. Asme, J. Heat Transf., vol. 84, no. 3, pp. 257–261, 1962. DOI:10.1115/1.3684359.
  • H. Perkins, and G. Leppert, “Local heat-transfer coefficients on a uniformly heated cylinder,” Int. J. Heat Mass Transf., vol. 7, no. 2, pp. 143–158, 1964. DOI:10.1016/0017-9310(64)90079-1.
  • K. M. Krall, “Local heat transfer around a transverse circular cylinder in slip flow,” Ph.D. dissertation, University of Minnesota, Minneapolis, Minnesota, 1969.
  • K. M. Krall, and E. R. G. Eckert, “Local heat transfer around a cylinder at low Reynolds number,” Trans. Asme, J. Heat Transf., vol. 95, no. 2, pp. 273–275, 1973. DOI:10.1115/1.3450044.
  • M. I. Boulos, and D. C. Pei, “Dynamics of heat transfer from cylinders in a turbulent air stream,” Int. J. Heat Mass Transf., vol. 17, no. 7, pp. 767–783, 1974. DOI:10.1016/0017-9310(74)90171-9.
  • T. S. Sarma, and S. P. Sukhatme, “Local heat transfer from a horizontal cylinder to air in cross flow: Influence of free convection and free stream turbulence,” Int. J. Heat Mass Transf., vol. 20, no. 1, pp. 51–56, 1977. DOI:10.1016/0017-9310(77)90083-7.
  • N. R. Yardi, and S. P. Sukhatme, “Effects of turbulence intensity and integral length scale of a turbulent free stream on forced convection heat transfer,” in Sixth International Heat Transfer Conference, pp. 347–352, August 1978.
  • S. Aiba, T. Ota, and H. Tsuchida, “Heat transfer and flow around a circular cylinder with tripping-wires,” Wärme - Und StoffüBertragung, vol. 12, no. 3–4, pp. 221–231, 1979.
  • H. Nakamura, and T. Igarashi, “Variation of Nusselt number with flow regimes behind a circular cylinder for Reynolds numbers from 70 to 30000,” Int. J. Heat Mass Transf., vol. 47, no. 23, pp. 5169–5173, 2004. DOI:10.1016/j.ijheatmasstransfer.2004.05.034.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Introduction to Heat Transfer. ch. 7, New York: Wiley, 6th ed., 2011, pp. 436–437.
  • W. A. Khan, J. R. Culham, and M. M. Yovanovich, “Fluid flow around and heat transfer from an infinite circular cylinder,” Trans. Asme, J. Heat Transf., vol. 127, no. 7, pp. 785–790, 2005. DOI:10.1115/1.1924629.
  • A. A. Soares, J. M. Ferreira, and R. P. Chhabra, “Flow and forced convection heat transfer in crossflow of non-newtonian fluids over a circular cylinder,” Ind. Eng. Chem. Res., vol. 44, no. 15, pp. 5815–5827, 2005. DOI:10.1021/ie0500669.
  • R. P. Bharti, R. Chhabra, and V. Eswaran, “Steady forced convection heat transfer from a heated circular cylinder to power-law fluids,” Int. J. Heat Mass Transf., vol. 50, no. 5–6, pp. 977–990, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.08.008.
  • H. Tennekes, and J. L. Lumley, A First Course in Turbulence. ch. 2, Cambridge: The MIT Press, 1972, p. 28.
  • A. Žukauskas, and J. Žiugžda, Heat Transfer of Cylinders in Crossflow. ch. 3, Washington, DC: Hemisphere Publishing Corporation, 1985, p. 28.
  • L. Lu, C. R. Doering, and F. H. Busse, “Bounds on convection driven by internal heating,” J. Math. Phys., vol. 45, no. 7, pp. 2967–2986, 2004.
  • C. Williamson, “Vortex dynamics in the cylinder wake,” Annu. Rev. Fluid Mechanics, vol. 28, no. 1, pp. 477–539, 1996. DOI:10.1146/annurev.fluid.28.1.477.
  • B. Rajani, A. Kandasamy, and S. Majumdar, “Numerical simulation of laminar flow past a circular cylinder,” Appl. Math. Modelling, vol. 33, no. 3, pp. 1228–1247, 2009. DOI:10.1016/j.apm.2008.01.017.
  • P. G. Tucker, Unsteady Computational Fluid Dynamics in Aeronautics. ch. 3, Netherlands: Springer, 2014, pp. 94–98.
  • J. Shao, and C. Zhang, “Numerical analysis of the flow around a circular cylinder using RANS and LES,” Int. J. Computational Fluid Dynamics, vol. 20, no. 5, pp. 301–307, 2006. DOI:10.1080/10618560600898437.
  • M. Abdelhady, “Assessing the accuracy of convective heat transfer from overhead conductor at low wind speed using Large Eddy Simulations (LES),” MSc. dissertation, University of Calgary, Calgary, Alberta, Canada, 2017.
  • C. Wieselsberger, “New data on the laws of fluid resistance,” Report NACA-TN-84, National Advisory Committee for Aeronautics, United States, March 1922.
  • A. Žukauskas, Handbook of Single-Phase Convective Heat Transfer. ch. 6, New York: Wiley, 1987, p. 7.
  • M. Zdravkovich, “Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders,” J. Wind Eng. Ind. Aerodynamics, vol. 33, no. 1–2, pp. 53–62, 1990. DOI:10.1016/0167-6105(90)90020-D.
  • C. Norberg, “Fluctuating lift on a circular cylinder: Review and new measurements,” J. Fluids Struct., vol. 17, no. 1, pp. 57–96, 2003.
  • M. M. Zdravkovich, Flow around Circular Cylinders, Volume 1: Fundamentals. ch. 2, New York: Oxford University Press, 1997, p. 20.
  • A. S. Grove, F. H. Shair, and E. E. Petersen, “An experimental investigation of the steady separated flow past a circular cylinder,” J. Fluid Mech., vol. 19, no. 1, pp. 60–80, 1964. DOI:10.1017/S0022112064000544.
  • R. D. Henderson, “Nonlinear dynamics and pattern formation in turbulent wake transition,” J. Fluid Mech., vol. 352, pp. 65–112, 1997. DOI:10.1017/S0022112097007465.
  • A. Thom, “The flow past circular cylinders at low speeds,” Proc. Roy. Soc. London A: Math. Phys. Eng. Sci., vol. 141, no. 845, pp. 651–669, 1933. DOI:10.1098/rspa.1933.0146.
  • C. Williamson, and A. Roshko, “Measurements of base pressure in the wake of a cylinder at low Reynolds numbers,” Zeitschrift Fur Flugwissenschaften Und Weltraumforschung, vol. 14, pp. 38–46, 1990.
  • M. Coutanceau, and R. Bouard, “Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. part 1. steady flow,” J. Fluid Mech., vol. 79, no. 2, pp. 231–256, 1977. DOI:10.1017/S0022112077000135.
  • E. R. G. Eckert, and E. Soehngen, “Distribution of heat-transfer coefficients around circular cylinders in crossflow at Reynolds numbers from 20 to 500,” Trans. ASME, pp. 343–347, 1952.
  • M. Lighthill, “Contributions to the theory of heat transfer through a laminar boundary layer,” in Proceedings of the Royal Society of London, vol. 202, pp. 359–377, The Royal Society, 1950.
  • S. Goldstein, Modern Developments in Fluid Dynamics. vol. II, ch. XIV, New York: Dover Publications, 1965, pp. 631–632.
  • B. Cantwell, and D. Coles, “An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder,” J. Fluid Mech., vol. 136, no. 1, pp. 321–374, 1983. DOI:10.1017/S0022112083002189.
  • C. Norberg, “Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder,” Report 87/2, Chalmers University of Technology, 1987.
  • C. Norberg, “LDV-measurements in the near wake of a circular cylinder,” in Proc. 1998 ASME Fluids Engineering Division — Summer Meeting, Advances in the Understanding of Bluff Body Wakes and Vortex-Induced Vibrations - BBVIV-1 (eds. P. W. Bearman & C. H. K. Williamson), June 21–25, 1998, Washington, DC, USA, 12 pages; New York: ASME (FEDSM98-5202), 1998.
  • J. S. Son, and T. J. Hanratty, “Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 x 103 to 105,” J. Fluid Mech., vol. 35, no. 2, pp. 353–368, 1969. DOI:10.1017/S0022112069001157.
  • G. S. Cardell, “Flow past a circular cylinder with a permeable wake splitter plate,” doctoral dissertation, California Institute of Technology, Pasadena, California, 1993.
  • L. Ong, and J. Wallace, “The velocity field of the turbulent very near wake of a circular cylinder,” Experiments Fluids, vol. 20, no. 6, pp. 441–453, 1996. DOI:10.1007/BF00189383.
  • D. A. Lysenko, I. S. Ertesv˚ag, and K. E. Rian, “Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox,” Flow, Turbulence Combustion, vol. 89, no. 4, pp. 491–518, 2012.
  • J. A. Hughes, “XVII. On the cooling of cylinders in a stream of air,” London, Edinburgh, Dublin Philosoph. Mag. J. Sci., vol. 31, no. 182, pp. 118–130, 1916. DOI:10.1080/14786440208635482.
  • T. Adachi, S. Okamoto, and M. Adachi, “The effect of sound on the rate of heat transfer from a cylinder placed normal to an air stream,” Bulletin JSME, vol. 22, no. 172, pp. 1407–1415, 1979.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.