Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 6
246
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of the magnetic field and Joule heating effects on force convection flow through parallel-plate microchannel in the presence of viscous dissipation effect

, &
Pages 499-516 | Received 23 Mar 2019, Accepted 05 Jul 2019, Published online: 18 Jul 2019

References

  • S. K. Das, S. U. Choi, and H. E. Patel, “Heat transfer in nanofluids—a review,” Heat Transf. Eng., vol. 27, no. 10, pp. 3–19, 2006. DOI: 10.1080/01457630600904593.
  • S. Kakaç and A. Pramuanjaroenkij, “Review of convective heat transfer enhancement with nanofluids,” Int. J. Heat Mass Transf., vol. 52, no. 13-14, pp. 3187–3196, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006.
  • H. Mohammed, G. Bhaskaran, N. Shuaib, and R. Saidur, “Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1502–1512, 2011. DOI: 10.1016/j.rser.2010.11.031.
  • X.-Q. Wang and A. S. Mujumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Therm. Sci., vol. 46, no. 1, pp. 1–19, 2007. DOI: 10.1016/j.ijthermalsci.2006.06.010.
  • W. Yu, D. M. France, J. L. Routbort, and S. U. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, no. 5, pp. 432–460, 2008. DOI: 10.1080/01457630701850851.
  • E. Abu-Nada and H. F. Oztop, “Numerical analysis of Al2o3/Water nanofluids natural convection in a wavy walled cavity,” Numer. Heat Transf. Part A Appl., vol. 59, no. 5, pp. 403–419, 2011. DOI: 10.1080/10407782.2011.552363.
  • S. U. Choi, “Nanofluid technology: current status and future research,” presented at the Second Korean-American Scientists and Engineers Association Research Trend Study, Vienna, VA, October 22–24, 1998.
  • E. Bellos and C. Tzivanidis, “A review of concentrating solar thermal collectors with and without nanofluids,” J. Therm. Anal. Calorim., vol. 135, no. 1, pp. 763–786, 2011. DOI: 10.1007/s10973-018-7183-1.
  • A. H. Pordanjani, A. Jahanbakhshi, A. A. Nadooshan, and M. Afrand, “Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution,” Int. J. Heat Mass Transf., vol. 121, pp. 565–578, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.019.
  • S. Rashidi, O. Mahian, and E. M. Languri, “Applications of nanofluids in condensing and evaporating systems,” J. Therm. Anal. Calorim., vol. 131, no. 3, pp. 2027–2039, 2018.. DOI: 10.1007/s10973-017-6773-7.
  • A. Kumar, S. Nath, and D. Bhanja, “Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling,” Numer. Heat Transf. Part A Appl., vol. 73, no. 7, pp. 429–445, 2018. DOI: 10.1080/10407782.2018.1448611.
  • M. Gavara, “Asymmetric forced convection of nanofluids in a channel with symmetrically mounted rib heaters on opposite walls,” Numer. Heat Transf. Part A Appl., vol. 62, no. 11, pp. 884–904, 2012. DOI: 10.1080/10407782.2012.707057.
  • D. B. Tuckerman and R. F. Pease, “Method and means for improved heat removal in compact semiconductor integrated circuits and similar devices utilizing coolant chambers and microscopic channels,” Google Patents, 1984.
  • M. G. Khan and A. Fartaj, “A review on microchannel heat exchangers and potential applications,” Int. J. Energy Res., vol. 35, no. 7, pp. 553–582, 2011. DOI: 10.1002/er.1720.
  • P. Gunnasegaran, E. Sandhita, H. Mohammed, M. A. Jalal, and N. Shuaib, “Heat transfer enhancement in microchannel heat sink using nanofluids,” Fluid Dynamics, Comput. Modeling App., pp. 287–326, 2012.
  • T.-C. Hung, W.-M. Yan, X.-D. Wang, and C.-Y. Chang, “Heat transfer enhancement in microchannel heat sinks using nanofluids,” Int. J. Heat Mass Transf., vol. 55, no. 9-10, pp. 2559–2570, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.01.004.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Numerical study on the convective heat transfer of nanofluid in a triangular minichannel heat sink using the Eulerian–Eulerian two-phase model,” Numer. Heat Transf. Part A Appl., vol. 72, no. 2, pp. 185–196, 2017. DOI: 10.1080/10407782.2017.1358990.
  • M.-H. Jian, H.-W. Tang, and Y.-T. Yang, “Numerical simulation and optimization of nanofluids in a complex micro heat sink,” Numer. Heat Transf. Part A Appl., vol. 71, no. 3, pp. 341–359, 2017. DOI: 10.1080/10407782.2016.1264751.
  • A. H. Saberi and M. Kalteh, “Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice Boltzmann method,” Numer. Heat Transf. Part A Appl., vol. 70, no. 12, pp. 1390–1401, 2016. DOI: 10.1080/10407782.2016.1244394.
  • A. Raisi, B. Ghasemi, and S. Aminossadati, “A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions,” Numer. Heat Transf. Part A Appl., vol. 59, no. 2, pp. 114–129, 2011. DOI: 10.1080/10407782.2011.540964.
  • C. Tso and S. Mahulikar, “The use of the Brinkman number for single phase forced convective heat transfer in microchannels,” Int. J. Heat Mass Transf., vol. 41, no. 12, pp. 1759–1769, 1998. DOI: 10.1016/S0017-9310(97)00232-9.
  • C. Tso and S. Mahulikar, “The role of the Brinkman number in analysing flow transitions in microchannels,” Int. J. Heat Mass Transf., vol. 42, no. 10, pp. 1813–1833, 1999. DOI: 10.1016/S0017-9310(98)00276-2.
  • C. Tso and S. Mahulikar, “Experimental verification of the role of Brinkman number in microchannels using local parameters,” Int. J. Heat Mass Transf., vol. 43, no. 10, pp. 1837–1849, 2000. DOI: 10.1016/S0017-9310(99)00241-0.
  • S. Del Giudice, C. Nonino, and S. Savino, “Effects of viscous dissipation and temperature dependent viscosity in thermally and simultaneously developing laminar flows in microchannels,” Int. J. Heat Fluid Flow, vol. 28, no. 1, pp. 15–27, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.05.007.
  • P. Bhattacharya, A. Samanta, and S. Chakraborty, “Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid,” Heat Mass Transf., vol. 45, no. 10, pp. 1323–1333, 2009. DOI: 10.1007/s00231-009-0510-0.
  • D. Lelea, “The performance evaluation of Al 2 O 3/water nanofluid flow and heat transfer in microchannel heat sink,” Int. J. Heat Mass Transf., vol. 54, no. 17–18, pp. 3891–3899, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.04.038.
  • M. Bahiraei and M. Hangi, “Flow and heat transfer characteristics of magnetic nanofluids: a review,” J. Magn. Magn. Mater., vol. 374, pp. 125–138, 2015. DOI: 10.1016/j.jmmm.2014.08.004.
  • J. M. Laskar, J. Philip, and B. Raj, “Experimental evidence for reversible zippering of chains in magnetic nanofluids under external magnetic fields,” Phys. Rev. E, vol. 80, no. 4, pp. 041401, 2009. DOI: 10.1103/PhysRevE.80.041401.
  • I. Nkurikiyimfura, Y. Wang, and Z. Pan, “Heat transfer enhancement by magnetic nanofluids—a review,” Renew. Sustain. Energy Rev., vol. 21, pp. 548–561, 2013. DOI: 10.1016/j.rser.2012.12.039.
  • P. Mayeli, H. Hesami, H. Besharati-Foumani, and M. Niajalili, “Al2O3–water nanofluid heat transfer and entropy generation in a ribbed channel with wavy wall in the presence of magnetic field,” Numer. Heat Transf. Part A Appl., vol. 73, no. 9, pp. 604–623, 2018. DOI: 10.1080/10407782.2018.1461494.
  • P. Mayeli, H. Hesami, and M. H. D. F. Moghaddam, “Numerical investigation of the MHD forced convection and entropy generation in a straight duct with sinusoidal walls containing water–Al2O3 nanofluid,” Numer. Heat Transf. Part A: Appl., vol. 71, no. 12, pp. 1235–1250, 2017.
  • O. Makinde, W. Khan, and Z. Khan, “Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet,” Int. J. Heat Mass Transf., vol. 62, pp. 526–533, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.049.
  • M. Sheikholeslami, M. G. Bandpy, R. Ellahi, and A. Zeeshan, “Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces,” J. Magn. Magn. Mater., vol. 369, pp. 69–80, 2014. DOI: 10.1016/j.jmmm.2014.06.017.
  • M. Sheikholeslami and M. M. Rashidi, “Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid,” J. Taiwan Inst. Chem. Eng., vol. 56, pp. 6–15, 2015. DOI: 10.1016/j.jtice.2015.03.035.
  • M. Sheikholeslami and D. D. Ganji, “Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM,” Comput. Methods Appl. Mech. Eng., vol. 283, pp. 651–663, 2015. DOI: 10.1016/j.cma.2014.09.038.
  • S. Aminossadati, A. Raisi, and B. Ghasemi, “Effects of magnetic field on nanofluid forced convection in a partially heated microchannel,” Int. J. Non-Linear Mech., vol. 46, no. 10, pp. 1373–1382, 2011. DOI: 10.1016/j.ijnonlinmec.2011.07.013.
  • C. L. Altan and S. Bucak, “The effect of Fe3O4 nanoparticles on the thermal conductivities of various base fluids,” Nanotechnology, vol. 22, no. 28, pp. 285713, 2011. DOI: 10.1088/0957-4484/22/28/285713.
  • A. Dogonchi, K. Divsalar, and D. Ganji, “Flow and heat transfer of MHD nanofluid between parallel plates in the presence of thermal radiation,” Comput. Methods Appl. Mech. Eng., vol. 310, pp. 58–76, 2016. DOI: 10.1016/j.cma.2016.07.003.
  • F. Hedayati and G. Domairry, “Nanoparticle migration effects on fully developed forced convection of TiO 2–water nanofluid in a parallel plate microchannel,” Particuology, vol. 24, pp. 96–107, 2016. DOI: 10.1016/j.partic.2014.11.012.
  • S. Hassani, R. Saidur, S. Mekhilef, and A. Hepbasli, “A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis,” Int. J. Heat Mass Transf., vol. 90, pp. 121–130, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.06.040.
  • J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanoparticle Res., vol. 6, no. 6, pp. 577–588, 2004. DOI: 10.1007/s11051-004-3170-5.
  • H. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • A. K. Santra, S. Sen, and N. Chakraborty, “Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates,” Int. J. Therm. Sci., vol. 48, no. 2, pp. 391–400, 2009. DOI: 10.1016/j.ijthermalsci.2008.10.004.
  • J. Sheela-Francisca and C. Tso, “Viscous dissipation effects on parallel plates with constant heat flux boundary conditions,” Int. Commun. Heat Mass Transf., vol. 36, no. 3, pp. 249–254, 2009. DOI: 10.1016/j.icheatmasstransfer.2008.11.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.