Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 7
117
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Flow patterns and heat transfer correlations in partially active cavity filled with water at its density maximum

, &
Pages 593-603 | Received 25 Mar 2019, Accepted 08 Jul 2019, Published online: 19 Jul 2019

References

  • T. L. Bergman, F. P. Incropera, and R. Viskanta, “Correlation of mixed layers growth in double-diffusive, salt-stratified system heated from below,” J. Heat Transf., vol. 108, no. 1, pp. 206–211, 1986. DOI: 10.1115/1.3246888.
  • P. K. Chao, H. Ozoe, and S. W. Churchill, “The effect of a non-uniform surface temperature on laminar natural convection in a rectangular enclosure,” Chem. Eng. Commun., vol. 9, no. 1–6, pp. 245–254, 1981. DOI: 10.1080/00986448108911026.
  • H. S. S. Chu, S. W. Churchill, and S. V. Patterson, “The effect of heater size, location, aspect ratio and boundary conditions on two-dimensional laminar natural convection in rectangular channels,” J. Heat Transf., vol. 98, no. 2, pp. 194–201, 1976. DOI: 10.1115/1.3450518.
  • P. K. B. Chao, H. Ozoe, S. W. Churchill, and N. Lior, “Laminar natural convection in an inclined rectangular box with the lower surface half-heated and half-insulated,” J. Heat Transfer, vol. 105, no. 3, pp. 425–432, 1983. DOI: 10.1115/1.3245602.
  • A. Valencia, and R. L. Frederick, “Heat transfer in square cavities with partially active vertical walls,” Int. J. Heat Mass Transf., vol. 32, no. 8, pp. 1567–1574, 1989. DOI: 10.1016/0017-9310(89)90078-1.
  • M. M. Ganzarolli, and L. F. Milanez, “Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides,” Int. J. Heat Mass Transfer, vol. 38, no. 6, pp. 1063–1073, 1995. DOI: 10.1016/0017-9310(94)00217-J.
  • R. A. V. Ramos, and L. F. Milanez, “Numerical and experimental analysis of natural convection in cavity heated from below, Proceedings of 11th International Heat Transfer Conference IHTC,” Kyongju, Korea, vol. 3, 1998.
  • B. Calgagni, F. Marsili, and M. Paroncini, “Natural convective heat transfer in square enclosures heated from below,” Appl. Therm. Eng., vol. 25, no. 16, pp. 2522–2531, 2005. DOI: 10.1016/j.applthermaleng.2004.11.032.
  • N. B. Cheikh, B. B. Beya, and T. Lili, “Influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below,” Int. Commun. Heat Mass Transf., vol. 34, no. 3, pp. 369–379, 2007. DOI: 10.1016/j.icheatmasstransfer.2006.11.001.
  • R. P. Soni, and M. R. Gavara, “Natural convection in a cavity surface mounted with discrete heaters and subjected to different cooling configurations,” Numer. Heat Transf. A: Appl., vol. 70, no. 1, pp. 79–102, 2016. DOI: 10.1080/10407782.2016.1173429.
  • P. Alam, A. Kumar, S. Kapoor, and S. R. Ansari, “Numerical investigation of natural convection in a rectangular enclosure due to partial heating and cooling at vertical walls,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 6, pp. 2403–2414, 2012. DOI: 10.1016/j.cnsns.2011.09.004.
  • M. Jourabian, M. Farhadi, and A. A. R. Darzi, “Convection-dominated melting of phase change material in partially heated cavity: Lattice Boltzmann study,” Heat Mass Transf., vol. 49, no. 4, pp. 555–565, 2013. DOI: 10.1007/s00231-012-1102-y.
  • G. Nardini, M. Paroncini, and R. Vitali, “An experimental and numerical analysis of natural convective heat transfer in a square cavity with five discrete heat Sources,” Trans. ASME J. Heat Transf., vol. 138, no. 12, pp. 122502–122508, 2016. DOI: 10.1115/1.4034160.
  • N. Nithyadevi, V. Divya, and M. Rajarathinam, “Effect of Prandtl number on natural convection in a rectangular enclosure with discrete heaters,” J. Appl. Sci. Eng., vol. 20, no. 2, pp. 173–182, 2017.
  • M. Bhuvaneswari, S. Sivasankaran, and Y. J. Kim, “Effect of aspect ratio on convection in a porous enclosure with partially active thermal walls,” Comp. Math. Appl., vol. 62, no. 10, pp. 3844–3856, 2011. DOI: 10.1016/j.camwa.2011.09.033.
  • K. Al-Farhany, and A. Abdulkadhim, “Numerical investigation of conjugate natural convection heat transfer in a square porous cavity heated partially from left sidewall,” Int. J. Heat Technol., vol. 36, no. 1, pp. 237–244, 2018. DOI: 10.18280/ijht.360132.
  • F. Wu, and G. Wang, “Numerical simulation of natural convection in an inclined porous cavity under time-periodic boundary conditions with a partially active thermal side wall,” RSC Adv., vol. 7, no. 28, pp. 17519–17530, 2017. DOI: 10.1039/C6RA28333K.
  • Q. Yu, Y. Lu, D. Peng, Y. Wu, and C. Ma, “Natural convection heat transfer of molten salt nanofluids around vertical array of heated horizontal cylinders,” Numer. Heat Transf. A, vol. 74, no. 10, pp. 1666–1684, 2018. DOI: 10.1080/10407782.2018.1543919.
  • F. Wu, G. Wang, and W. Zhou, “A thermal nonequilibrium approach to natural convection in a square enclosure due to the partially cooled sidewall of the enclosure,” Numer. Heat Transf. A: Appl., vol. 67, no. 7, pp. 771–790, 2015. DOI: 10.1080/10407782.2014.949189.
  • D. Das, and T. Basak, “Analysis of entropy generation during natural convection in discretely heated porous square and triangular enclosures,” Numer. Heat Transf. A: Appl., vol. 71, no. 10, pp. 979–1003, 2017. DOI: 10.1080/10407782.2017.1326785.
  • D. Das, L. Lukose, and T. Basak, “Role of multiple discrete heaters on the entropy generation during natural convection in porous square and triangular enclosures,” Numer. Heat Transf. A: Appl., vol. 74, no. 10, pp. 1636–1665, 2018. DOI: 10.1080/10407782.2018.1529483.
  • M. K. Das, “Natural convection heat transfer augmentation in a partially heated and partially cooled square cavity utilizing nanofluids,” Int. J. Numer. Methods Heat Fluid Flow, vol. 19, no. 3/4, pp. 411–431, 2009. DOI: 10.1108/09615530910938353.
  • M. Guestal, M. Kadja, and M. T. Hoang, “Study of heat transfer by natural convection of nanofluids in a partially heated cylindrical enclosure,” Case Stud. Therm. Eng., vol. 11, pp. 135–144, 2018. DOI: 10.1016/j.csite.2018.01.008.
  • S. Sivasankaran, and M. Bhuvaneswari, “Effect of thermally active zones and direction of magnetic field on hydromagnetic convection in an enclosure,” Therm. Sci., vol. 15, no. suppl. 2, pp. 367–382, 2011. DOI: 10.2298/TSCI100221094S.
  • J. Heier, C. Bales, and V. Martin, “Combining thermal energy storage with buildings—a review,” Renew. Sustain. Energy Rev., vol. 42, pp. 1305–1325, 2015.DOI: 10.1016/j.rser.2014.11.031.
  • G. Li, Y. Hwang, and R. Radermacher, “Review of cold storage materials for air conditioning application,” Int. J. Refrig., vol. 35, no. 8, pp. 2053–2077, 2012. DOI: 10.1016/j.ijrefrig.2012.06.003.
  • N. Nithyadevi, S. Sivasankaran, and P. Kandaswamy, “Buoyancy − Driven convection of water near its density maximum with time periodic partially active vertical walls,” Int. J. Heat Mass Transf., vol. 50, no. 5/6, pp. 942–948, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.08.013.
  • M. A. Ezan, and M. Kalfa, “Natural convection of water near 4 °C inside partially heated and cooled vertical walls,” J. Therm. Sci. Technol., vol. 37, no. 1, pp. 1–12, 2017.
  • F. Kohlrausch, Praktische Physik, Band 3, 22. Auflage. Stuttgart: B.G. Teubner, 1968, table 22203, pp. 1692–1693

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.