Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 7
299
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Natural convection in a cavity with undulated walls filled with water-based non-Newtonian power-law CuO–water nanofluid under the influence of the external magnetic field

&
Pages 552-575 | Received 05 Apr 2019, Accepted 12 Jul 2019, Published online: 29 Jul 2019

References

  • S. Ostrach, “Natural convection in enclosures,” Trans. ASME, J. Heat Transf., vol. 110, no. 4b, pp. 1175–1190, 1988. DOI: 10.1115/1.3250619.
  • K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • R. Y. Jou and S. C. Tzeng, “Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures,” Int. Commun. Heat Mass Transf., vol. 33, no. 6, pp. 727–736, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.016.
  • H. F. Oztop, and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.04.009.
  • C. J. Ho, W. K. Liu, Y. S. Chang, and C. C. Lin, “Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study,” Int. J. Thermal Sci., vol. 49, no. 8, pp. 1345–1353, 2010. DOI: 10.1016/j.ijthermalsci.2010.02.013.
  • L. Snoussi, R. Chouikh, N. Ouerfelli, and A. Guizani, “Numerical simulation of heat transfer enhancement for natural convection in a cubical enclosure filled with Al2O3/water and Ag/water nanofluids,” Phys. Chem. Liquids, vol. 54, no. 6, pp. 703–716, 2016. DOI: 10.1080/00319104.2016.1149173.
  • S. M. Aminossadati and B. Ghasemi, “Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure,” Eur. J. Mech – B/Fluids, vol. 28, no. 5, pp. 630–640, 2009. DOI: 10.1016/j.euromechflu.2009.05.006.
  • E. H. Ooi and V. Popov, “Numerical study of influence of nanoparticle shape on the natural convection in Cu-water nanofluid,” Int J Thermal Sci., vol. 65, pp. 178–188, 2013. DOI: 10.1016/j.ijthermalsci.2012.10.020.
  • E. B. Öğüt, “Natural convection of water-based nanofluids in an inclined enclosure with a heat source,” Int. J. Thermal Sci., vol. 48, no. 11, pp. 2063–2073, 2009.
  • N. Rudraiah, R. M. Barron, M. Venkatachalappa, and C. K. Subbaraya, “Effect of a magnetic field on free convection in a rectangular enclosure,” Int. J. Eng. Sci., vol. 33, no. 8, pp. 1075–1084, 1995. DOI: 10.1016/0020-7225(94)00120-9.
  • S. C. Kakarantzas, I. E. Sarris, A. P. Grecos, and N. S. Vlachos, “Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature,” Int. J. Heat Mass Transf., vol. 52, no. 1/2, pp. 250–259, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.035.
  • H. F. Oztop, M. Oztop, and Y. Varol, “Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 3, pp. 770–778, 2009. DOI: 10.1016/j.cnsns.2007.11.005.
  • T. Javed and M. A. Siddiqui, “Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source,” Int. J. Thermal Sci., vol. 125, pp. 419–427, 2018. DOI: 10.1016/j.ijthermalsci.2017.12.009.
  • J. H. Son and I. S. Park, “Numerical study of MHD natural convection in a rectangular enclosure with an insulated block,” Numer. Heat Tr., Part A: Appl., vol. 71, no. 10, pp. 1004–1022, 2017. DOI: 10.1080/10407782.2017.1330090.
  • I. G. Reilly, C. Tien, and M. Adelman, “Experimental study of natural convective heat transfer from a vertical plate in a non‐newtonian fluid,” Can. J. Chem. Eng., vol. 43, no. 4, pp. 157–160, 1965. DOI: 10.1002/cjce.5450430401.
  • H. Ozoe and S. W. Churchill, “Hydrodynamic stability and natural convection in Ostwald‐de Waele and Ellis fluids: The development of a numerical solution,” AIChE J., vol. 18, no. 6, pp. 1196–1207, 1972. DOI: 10.1002/aic.690180617.
  • M. Lamsaadi, M. Naimi, M. Hasnaoui, and M. Mamou, “Natural convection in a vertical rectangular cavity filled with a non-Newtonian power law fluid and subjected to a horizontal temperature gradient,” Numer. Heat Tr., A: Appl., vol. 49, no. 10, pp. 969–990, 2006. DOI: 10.1080/10407780500324988.
  • L. Khezzar, D. Siginer, and I. Vinogradov, “Natural convection of power law fluids in inclined cavities,” Int. J. Thermal Sci., vol. 53, pp. 8–17, 2012. DOI: 10.1016/j.ijthermalsci.2011.10.020.
  • A. Sojoudi, S. C. Saha, Y. Gu, and M. A. Hossain, “Steady natural convection of non-Newtonian power-law fluid in a trapezoidal enclosure,” Adv. Mech. Eng., vol. 5, p, pp. 653108, 2013. DOI: 10.1155/2013/653108.
  • M. Ohta, M. Ohta, M. Akiyoshi, and E. Obata, “A numerical study on natural convective heat transfer of pseudoplastic fluids in a square cavity,” Numer. Heat Tr A: Appl., vol. 41, no. 4, pp. 357–372, 2002. DOI: 10.1080/104077802317261218.
  • G. H. R. Kefayati, “Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity,” Powder Technol., vol. 299, pp. 127–149, 2016. DOI: 10.1016/j.powtec.2016.05.032.
  • G. R. Kefayati, “Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure,” Int. J. Heat Mass Transf., vol. 92, pp. 1066–1089, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.078.
  • S. Morsli and A. Sabeur-Bendehina, “Entropy generation and natural convection in square cavities with wavy walls,” J. Appl. Mech. Tech. Phys., vol. 54, no. 6, pp. 913–920, 2013. DOI: 10.1134/S0021894413060060.
  • S. Mahmud and A. S. Islam, “Laminar free convection and entropy generation inside an inclined wavy enclosure,” Int. J. Thermal Sci., vol. 42, no. 11, pp. 1003–1012, 2003. DOI: 10.1016/S1290-0729(03)00076-0.
  • P. Biswal and T. Basak, “Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a review,” Renew. Sustain. Energy Rev., vol. 80, pp. 1412–1457, 2017. DOI: 10.1016/j.rser.2017.04.070.
  • M. Esmaeilpour and M. Abdollahzadeh, “Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls,” Int. J. Thermal Sci., vol. 52, pp. 127–136, 2012. DOI: 10.1016/j.ijthermalsci.2011.08.019.
  • C. C. Cho, “Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface,” Int. J. Heat Mass Transf., vol. 77, pp. 818–827, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.05.063.
  • S. Bhardwaj, A. Dalal, and S. Pati, “Influence of wavy wall and non-uniform heating on natural convection heat transfer and entropy generation inside porous complex enclosure,” Energy, vol. 79, pp. 467–481, 2015. DOI: 10.1016/j.energy.2014.11.036.
  • S. Mahmud, R. A. Fraser, and I. Pop, “Flow, thermal, energy transfer, and entropy generation characteristics inside wavy enclosures filled with microstructures,” Trans. ASME, J. Heat Tr., vol. 129, no. 11, pp. 1564–1575, 2007. DOI: 10.1115/1.2759976.
  • Q. H. Deng and J. J. Chang, “Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls,” Numer. Heat Tr, A: Appl., vol. 54, no. 5, pp. 507–524, 2008. DOI: 10.1080/01457630802186080.
  • N. H. Saeid and Y. Yaacob, “Natural convection in a square cavity with spatial side-wall temperature variation,” Numer. Heat Tr., Part A: Appl., vol. 49, no. 7, pp. 683–697, 2006. DOI: 10.1080/10407780500359943.
  • M. A. Sheremet and I. Pop, “Natural convection in a square porous cavity with sinusoidal temperature distributions on both side walls filled with a nanofluid: Buongiorno’s mathematical model,” Transp. Porous Media, vol. 105, no. 2, pp. 411–429, 2014. DOI: 10.1007/s11242-014-0375-7.
  • E. Bilgen and R. B. Yedder, “Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side,” Int. J. Heat Mass Transf., vol. 50, no. 1-2, pp. 139–150, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.027.
  • I. Zahmatkesh, “Natural convection and entropy generation in a porous enclosure with sinusoidal temperature variation on the side walls,” J. Fluid Flow, vol. 1, pp. 23–29, 2014.
  • N. H. Saeid, “Natural convection in porous cavity with sinusoidal bottom wall temperature variation,” Int. Commun. Heat Mass Transf., vol. 32, no. 3-4, pp. 454–463, 2005. DOI: 10.1016/j.icheatmasstransfer.2004.02.018.
  • T. Basak, S. Roy, and A. R. Balakrishnan, “Effects of thermal boundary conditions on natural convection flows within a square cavity,” Int. J. Heat Mass Transf., vol. 49, no. 23-24, pp. 4525–4535, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.015.
  • A. J. Chamkha, A. M. Rashad, M. A. Mansour, T. Armaghani, and M. Ghalambaz, “Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip,” Phys. Fluids, vol. 29, no. 5, pp. 052001, 2017. DOI: 10.1063/1.4981911.
  • J. K. Mulamootil and S. K. Dash, “Numerical investigation of natural convection heat transfer from an array of horizontal fins in non-Newtonian power-law fluids,” Trans. ASME, J. Heat Transf., vol. 140, no. 2, pp. 022501, 2017. DOI: 10.1115/1.4037537.
  • J. F. Xie and B. Y. Cao, “Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study,” Numer. Heat Tr., A: Appl., vol. 72, no. 8, pp. 600–627, 2017. DOI: 10.1080/10407782.2017.1394134.
  • N. Reddy and K. Murugesan, “Magnetic field influence on double-diffusive natural convection in a square cavity–A numerical study,” Numer. Heat Transf., Part A: Appl., vol. 71, no. 4, pp. 448–475, 2017. DOI: 10.1080/10407782.2016.1277922.
  • L. Kolsi, K. Kalidasan, A. Alghamdi, M. N. Borjini, and P. R. Kanna, “Natural convection and entropy generation in a cubical cavity with twin adiabatic blocks filled by aluminum oxide–water nanofluid,” Numer. Heat Tr., A: Appl., vol. 70, no. 3, pp. 242–259, 2016. DOI: 10.1080/10407782.2016.1173478.
  • P. Biswal and T. Basak, “Analysis of entropy generation during natural convection in porous enclosures with curved surfaces,” Numer. Heat Tr., A: Appl., vol. 71, no. 1, pp. 17–43, 2017. DOI: 10.1080/10407782.2016.1244399.
  • H. Enayati, A. J. Chandy, and M. J. Braun, “Numerical simulations of transitional and turbulent natural convection in laterally heated cylindrical enclosures for crystal growth,” Numer. Heat Transf., Part A: Appl., vol. 70, no. 11, pp. 1195–1212, 2016. DOI: 10.1080/10407782.2016.1230378.
  • A. J. Ahrar and M. H. Djavareshkian, “Novel hybrid lattice Boltzmann technique with TVD characteristics for simulation of heat transfer and entropy generations of MHD and natural convection in a cavity,” Numer. Heat Tr., B: Fund., vol. 72, no. 6, pp. 431–449, 2017. DOI: 10.1080/10407790.2017.1409528.
  • K. Murugesan, D. C. Lo, D. L. Young, C. M. Fan, and C. W. Chen, “Global matrix-free finite-element scheme for natural convection in a square cavity with step blockage,” Numer. Heat Tr., B: Fund., vol. 50, no. 4, pp. 353–373, 2006. DOI: 10.1080/10407790600604742.
  • M. Mahmoodi and S. M. Sebdani, “Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the center,” Superlattices Microst., vol. 52, no. 2, pp. 261–275, 2012. DOI: 10.1016/j.spmi.2012.05.007.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fund., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • Ansys Fluent, Release 15.0. Canonsburg, Pennsylvania, USA: User Manual, Inc., 2006.
  • J. R. Senapati, S. K. Dash, and S. Roy, “3D numerical study of the effect of eccentricity on heat transfer characteristics over horizontal cylinder fitted with annular fins,” Int. J. Thermal Sci., vol. 108, pp. 28–39, 2016. Vol. DOI: 10.1016/j.ijthermalsci.2016.04.021.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a short or long, solid or hollow horizontal cylinder suspended in air or placed on ground,” Trans. ASME, J. Heat Transf., vol. 139, no. 7, pp. 072501, 2017. DOI: 10.1115/1.4035919.
  • S. Acharya, S. Agrawal, and S. K. Dash, “Numerical analysis of natural convection heat transfer from a vertical hollow cylinder suspended in air,” Trans. ASME, J. Heat Transf., vol. 140, no. 5, pp. 052501, 2018. DOI: 10.1115/1.4038478.
  • S. Acharya and S. K. Dash, “Natural Convection Heat Transfer From Perforated Hollow Cylinder With Inline and Staggered Holes,” Trans. ASME, J. Heat Transf., vol. 140, no. 3, pp. 032501, 2017. DOI: 10.1115/1.4037875.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a horizontal hollow cylinder with internal longitudinal fins,” Int. J. Thermal Sci., vol. 134, pp. 40–53, 2018. DOI: 10.1016/j.ijthermalsci.2018.07.039.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a hollow horizontal cylinder with external longitudinal fins: a numerical approach,” Numer. Heat Tr, A: Appl., vol. 74, no. 7, pp. 1–19, 2018. DOI: 10.1080/10407782.2018.1505096.
  • S. Patankar, 1980. Numerical Heat Transfer and Fluid Flow. Boca Raton, Florida: CRC Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.