Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 9
276
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Numerical visualization via heatlines for natural convection in porous bodies of rhombic shapes subjected to thermal aspect ratio-based heating of walls

, &
Pages 687-711 | Received 01 May 2019, Accepted 19 Jul 2019, Published online: 05 Aug 2019

References

  • G. Yu, B. Yu, Y. Liang, M. Wang, Y. Joshi, and D. Sun, “A new general model for phase-change heat transfer of waxy crude oil during the ambient-induced cooling process,” Numer. Heat Transfer A Appl., vol. 71, no. 5, pp. 511–527, 2017. DOI: 10.1080/10407782.2016.1277934.
  • C. Wei, Z. J. Liu, Z. Y. Li, Z. G. Qu, Y. L. He, and W. Q. Tao, “Numerical study on some improvements in the passive cooling system of a radio base station base on multiscale thermal modeling methodology-part I: Confirmation of simplified models,” Numer. Heat Transfer A Appl., vol. 65, no. 9, pp. 844–862, 2014. DOI: 10.1080/10407782.2013.826082.
  • J. R. Berg, H. M. Soliman, and S. J. Ormiston, “Turbulent mixed-convection cooling of stacked heat-generating bodies in a three-dimensional domain,” Numer. Heat Transfer A Appl., vol. 53, no. 3, pp. 249–272, 2007. DOI: 10.1080/10407780701454238.
  • Y. Billaud, D. Saury, and D. Lemonnier, “Numerical investigation of coupled natural convection and radiation in a differentially heated cubic cavity filled with humid air. Effects of the cavity size,” Numer. Heat Transfer A Appl., vol. 72, no. 7, pp. 495–518, 2017. DOI: 10.1080/10407782.2017.1386509.
  • M. D. Muhammad, O. Badr, and H. Yeung, “CFD modeling of the charging and discharging of a shell-and-tube latent heat storage system for high-temperature applications,” Numer. Heat Transfer A Appl., vol. 68, no. 8, pp. 813–826, 2015. DOI: 10.1080/10407782.2015.1023094.
  • F. Kuznik and G. Rusaouen, “Numerical prediction of natural convection occurring in building components: A double-population lattice Boltzmann method,” Numer. Heat Tr. A Appl, vol. 52, no. 4, pp. 315–335, 2007. DOI: 10.1080/00397910601149959.
  • R. Nasrin, S. Parvin, and M. A. Alim, “Heat transfer and collector efficiency through a direct absorption solar collector with radiative heat flux effect,” Numer. Heat Transfer A Appl., vol. 68, no. 8, pp. 887–907, 2015. DOI: 10.1080/10407782.2015.1023122.
  • B. S. Yilbas and O. S. Kaleem, “Performance characteristics of a volumetric solar receiver: Presence of an absorber plate with a selective surface,” Numer. Heat Transfer A Appl., vol. 67, no. 9, pp. 992–1009, 2015. DOI: 10.1080/10407782.2014.955333.
  • Y. T. Yang and P. J. Chen, “Numerical study of a solar collector with partitions,” Numer. Heat Transfer A Appl., vol. 66, no. 7, pp. 773–791, 2014. DOI: 10.1080/10407782.2014.892330.
  • A. Kumar, S. Nath, and D. Bhanja, “Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling,” Numer. Heat Transfer A Appl., vol. 73, no. 7, pp. 429–445, 2018. DOI: 10.1080/10407782.2018.1448611.
  • S. Q. Lin, T. M. Shih, R. R. G. Chang, and Z. Chen, “Optimization of cooling effects with fins of variable cross-sections,” Numer. Heat Transfer A Appl., vol. 69, no. 8, pp. 850–858, 2016. DOI: 10.1080/10407782.2015.1090830.
  • Y. S. Tseng, B. S. Pei, and T. C. Hung, “Effects of thermal radiation for electronic cooling on modified PCB geometry under natural convection,” Numer. Heat Transfer A Appl., vol. 51, no. 2, pp. 195–210, 2007. DOI: 10.1080/10407780600762665.
  • J. L. Yuan, M. Rokni, and B. Sundén, “Buoyancy effects on developing laminar gas flow and heat transfer in a rectangular fuel cell duct,” Numer. Heat Transfer A Appl., vol. 39, no. 8, pp. 801–822, 2001. DOI: 10.1080/10407780152121155.
  • X. H. Yang and J. Liu, “Probing the Rayleigh-Benard convection phase change mechanism of low-melting-point metal via lattice Boltzmann method,” Numer. Heat Transfer A Appl., vol. 73, no. 1, pp. 34–54, 2018. DOI: 10.1080/10407782.2017.1420307.
  • N. Ben Khelifa, Z. Alloui, H. Beji, and P. Vasseur, “Natural convection in a horizontal porous cavity filled with a non-Newtonian binary fluid of power-law type,” J Non-Newton Fluid, vol. 169, pp. 15–25, 2012. DOI: 10.1016/j.jnnfm.2011.11.002.
  • M. Sankar, Y. Park, J. M. Lopez, and Y. Do, “Double-diffusive convection from a discrete heat and solute source in a vertical porous annulus,” Transport Porous Med, vol. 91, no. 3, pp. 753–775, 2012. DOI: 10.1007/s11242-011-9871-1.
  • M. A. Mansour, M. M. Abd-Elaziz, R. Abdalla, and S. Elsayed, “Effect of sinusoidal variations of boundary conditions on unsteady double diffusive convection in a square enclosure filled with a porous medium,” Int J Numer Meth Heat Fluid Flow, vol. 22, no. 1, pp. 129–146, 2012. DOI: 10.1108/09615531211188838.
  • A. K. Tiwari, A. K. Singh, P. Chandran, and N. C. Sacheti, “Natural convection in a cavity with a sloping upper surface filled with an anisotropic porous material,” Acta Mech., vol. 223, no. 1, pp. 95–108, 2012. DOI: 10.1007/s00707-011-0544-5.
  • L. C. Jin, X. R. Zhang, and X. D. Niu, “Lattice Boltzmann simulation for temperature-sensitive magnetic fluids in a porous square cavity,” J. Magn. Magn. Mater., vol. 324, no. 1, pp. 44–51, 2012. DOI: 10.1016/j.jmmm.2011.07.033.
  • M. Bhuvaneswari, S. Sivasankaran, and Y. J. Kim, “Effect of aspect ratio on convection in a porous enclosure with partially active thermal walls,” Comput. Math. Appl., vol. 62, no. 10, pp. 3844–3856, 2011. DOI: 10.1016/j.camwa.2011.09.033.
  • F. Y. Zhao, D. Liu, and G. F. Tang, “Inverse determination of boundary heat fluxes in a porous enclosure dynamically coupled with thermal transport,” Chem. Eng. Sci., vol. 64, no. 7, pp. 1390–1403, 2009. DOI: 10.1016/j.ces.2008.12.005.
  • S. Dutta, A. K. Biswas, and S. Pati, “Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall,” Numer. Heat Transfer A Appl., vol. 73, no. 4, pp. 222–240, 2018. DOI: 10.1080/10407782.2018.1423773.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop, and K. Al-Salem, “Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid,” Numer. Heat Transfer A Appl., vol. 72, no. 6, pp. 474–494, 2017.
  • F. Moukalled, J. Kasamani, M. Darwish, A. Hammoud, and M. K. Mansour, “Buoyancy-induced flow, heat, and mass transfer in a porous annulus,” Numer. Heat Transfer A Appl., vol. 72, no. 2, pp. 107–125, 2017. DOI: 10.1080/10407782.2017.1359014.
  • P. Meshram, S. Bhardwaj, A. Dalal, and S. Pati, “Effects of the inclination angle on natural convection heat transfer and entropy generation in a square porous enclosure,” Numer. Heat Transfer A Appl., vol. 70, no. 11, pp. 1271–1296, 2016. DOI: 10.1080/10407782.2016.1230433.
  • H. Zargartalebi, M. Ghalambaz, A. Noghrehabadi, and A. J. Chamkha, “Natural convection of a nanofluid in an enclosure with an inclined local thermal non-equilibrium porous fin considering Buongiorno’s model,” Numer. Heat Transfer A Appl., vol. 70, no. 4, pp. 432–445, 2016. DOI: 10.1080/10407782.2016.1173483.
  • F. Arpino, G. Cortellessa, and A. Mauro, “Transient thermal analysis of natural convection in porous and partially porous cavities,” Numer. Heat Transfer A Appl., vol. 67, no. 6, pp. 605–631, 2015. DOI: 10.1080/10407782.2014.949133.
  • M. Zeng, P. Yu, F. Xu, and Q. W. Wang, “Natural convection in triangular attics filled with porous medium heated from below,” Numer. Heat Transfer A Appl., vol. 63, no. 10, pp. 735–754, 2013. DOI: 10.1080/10407782.2013.756702.
  • E. Ebrahumnia-Bajestan, H. Niazmand, V. Etminan-Farooji, and E. Ebrahimnia, “Numerical modeling of the freezing of a porous humid food inside a cavity due to natural convection,” Numer. Heat Transfer A Appl., vol. 62, no. 3, pp. 250–269, 2012. DOI: 10.1080/10407782.2012.691050.
  • A. Khadiri, A. Amahmid, M. Hasnaoui, and A. Ritbi, “Soret effect on double-diffusive convection in a square porous cavity heated and salted from below,” Numer. Heat Transfer A Appl., vol. 57, no. 11, pp. 848–868, 2010. DOI: 10.1080/10407782.2010.489487.
  • G. B. Kim and J. M. Hyun, “Buoyant convection of a power-law fluid in an enclosure filled with heat-generating porous media,” Numer. Heat Transfer A Appl., vol. 45, no. 6, pp. 569–582, 2004. DOI: 10.1080/10407780490277572.
  • K. C. Yung, H. Liem, H. S. Choy, and W. K. Lun, “Thermal performance of high brightness LED array package on PCB,” Int. Commun. Heat Mass Transfer, vol. 37, no. 9, pp. 1266–1272, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.07.023.
  • A. G. Fedorov and R. Viskanta, “A numerical simulation of conjugate heat transfer in an electronic package formed by embedded discrete heat sources in contact with a porous heat sink,” J Electron Packaging, vol. 119, no. 1, pp. 8–16, 1997. DOI: 10.1115/1.2792207.
  • S. Adjal, S. Aklouche-Benouaguef, and B. Zeghmati, “Natural convection in a partially porous cavity: Roads to chaos,” Numer. Heat Transfer A Appl., vol. 74, no. 8, pp. 1443–1467, 2018. DOI: 10.1080/10407782.2018.1525158.
  • K. M. Lisboa, J. Su, and R. M. Cotta, “Single domain integral transform analysis of natural convection in cavities partially filled with heat generating porous medium,” Numer. Heat Transfer A Appl., vol. 74, no. 3, pp. 1068–1086, 2018. DOI: 10.1080/10407782.2018.1511141.
  • M. S. Astanina, M. A. Sheremet, and J. C. Umavathi, “Transient natural convection with temperature-dependent viscosity in a square partially porous cavity having a heat-generating source,” Numer. Heat Transfer A Appl., vol. 73, no. 12, pp. 849–862, 2018. DOI: 10.1080/10407782.2018.1462007.
  • D. Chiappini, A. Festuccia, and G. Bella, “Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media,” Numer. Heat Transfer A Appl., vol. 73, no. 5, pp. 291–306, 2018. DOI: 10.1080/10407782.2018.1444868.
  • F. Amin and A. Malek, “Spectral Fourier-Galerkin benchmark solution for natural convection in an inclined saturated porous medium,” Numer. Heat Transfer B Fund, vol. 71, no. 4, pp. 372–395, 2017. DOI: 10.1080/10407790.2016.1265300.
  • M. T. Nguyen, A. M. Aly, and S. W. Lee, “Natural convection in a non-Darcy porous cavity filled with Cu-water nanofluid using the characteristic-based split procedure in finite-element method,” Numer. Heat Transfer A Appl., vol. 67, no. 2, pp. 224–247, 2015. DOI: 10.1080/10407782.2014.923225.
  • F. Moukalled, H. Diab, and S. Acharya, “Laminar natural convection in a horizontal rhombic annulus,” Numer. Heat Transfer A Appl., vol. 24, no. 1, pp. 89–107, 1993. DOI: 10.1080/10407789308902604.
  • F. Moukalled and S. Acharya, “Laminar natural convection heat-transfer in an eccentric rhombic annulus,” Numer. Heat Transfer A Appl., vol. 26, no. 5, pp. 551–568, 1994. DOI: 10.1080/10407789408956009.
  • F. Moukalled and M. Darwish, “Natural-convection heat transfer in a porous rhombic annulus,” Numer. Heat Transfer A Appl., vol. 58, no. 2, pp. 101–124, 2010. DOI: 10.1080/10407782.2010.497322.
  • A. Bairi, J. M. Garcia de Maria, and N. Laraqi, “Transient natural convection in parallelogrammic enclosures with isothermal hot wall. Experimental and numerical study applied to on-board electronics,” Appl. Therm. Eng., vol. 30, no. 10, pp. 1115–1125, 2010. DOI: 10.1016/j.applthermaleng.2010.01.026.
  • R. Anandalakshmi and T. Basak, “Heatline analysis for natural convection within porous rhombic cavities with isothermal/nonisothermal hot bottom wall,” Ind. Eng. Chem. Res, vol. 51, no. 4, pp. 2113–2132, 2012. DOI: 10.1021/ie2007856.
  • R. Anandalakshmi and T. Basak, “Heatline based thermal management for natural convection in porous rhombic enclosures with isothermal hot side or bottom wall,” Energy Con. Manage., vol. 67, pp. 287–296, 2013. DOI: 10.1016/j.enconman.2012.11.022.
  • F. Moukalled and M. Darwish, “Double diffusive natural convection in a porous rhombic annulus,” Numer. Heat Transfer A Appl., vol. 64, no. 5, pp. 378–399, 2013. DOI: 10.1080/10407782.2013.784656.
  • A. Rahimi, A. Kasaeipoor, E. H. Malekshah, and A. Amiri, “Natural convection analysis employing entropy generation and heatline visualization in a hollow L-shaped cavity filled with nanofluid using lattice Boltzmann method- experimental thermo-physical properties,” Phys. E Low Dimens. Syst. Nanostruct., vol. 97, pp. 82–97, 2018. DOI: 10.1016/j.physe.2017.10.004.
  • V. Kumar, S. V. S. S. N. V. G. K. Murthy, and B. V. R. Kumar, “Influence of MHD forces on Bejan’s heatlines and masslines in a doubly stratified fluid saturated Darcy porous enclosure in the presence of Soret and Dufour effects – A numerical study,” Int. J. Heat Mass Transfer, vol. 117, pp. 1041–1062, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.054.
  • D. Das and T. Basak, “Thermal management investigation on fluid processing within porous rhombic cavities: Heatlines versus entropy generation,” Can. J. Chem. Eng., vol. 95, no. 7, pp. 1399–1416, 2017. DOI: 10.1002/cjce.22771.
  • D. Das, P. Biswal, M. Roy, and T. Basak, “Role of the importance of ‘Forchheimer term’ for visualization of natural convection in porous enclosures of various shapes,” Int. J. Heat Mass Transfer, vol. 97, pp. 1044–1688, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.026.
  • N. Biswas, N. K. Manna, and P. S. Mahapatra, “Merit of non-uniform over uniform heating in a porous cavity,” Int. Comm. Heat Mass Transfer, vol. 78, pp. 135–144, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.09.001.
  • D. Kavya, D. Das, and T. Basak, “Analysis of thermal management on processing of fluids within rhombic cavities: Heatlines vs. entropy generation,” J. Taiwan Inst. Chem, vol. 68, pp. 301–322, 2016. DOI: 10.1016/j.jtice.2016.09.014.
  • D. Ramakrishna, T. Basak, S. Roy, and I. Pop, “Numerical study of mixed convection within porous square cavities using Bejan’s heatlines: Effects of thermal aspect ratio and thermal boundary conditions,” Int. J. Heat Mass Transfer, vol. 55, no. 21–22, pp. 5436–5448, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.058.
  • Y. Varol, H. F. Oztop, M. Mobedi, and I. Pop, “Visualization of heat flow using Bejan’s heatline due to natural convection of water near 4 degrees C in thick walled porous cavity,” Int. J. Heat Mass Trans, vol. 53, no. 9–10, pp. 1691–1698, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.020.
  • K. Hooman, H. Gurgenci, and I. Dincer, “Heatline and energy-flux-vector visualization of natural convection in a porous cavity occupied by a fluid with temperature-dependent viscosity,” J. Porous Media, vol. 12, no. 3, pp. 265–275, 2009. DOI: 10.1615/JPorMedia.v12.i3.60.
  • M. A. Waheed, “Heatfunction formulation of thermal convection in rectangular enclosures filled with porous media,” Numer. Heat Transfer A Appl, vol. 55, no. 2, pp. 185–204, 2009. DOI: 10.1080/10407780802603246.
  • K. Vafai and C. L. Tien, “Boundary and inertia effects on flow and heat transfer in porous media,” Int J Heat Mass Trans, vol. 24, no. 2, pp. 195–203, 1981. DOI: 10.1016/0017-9310(81)90027-2.
  • D. A. Nield and A. Bejan, Convection in Porous Media. NY: Springer; 2006.
  • D. A. Nield and D. D. Joseph, “Effects of quadratic drag on convection in a saturated porous medium,” Phys. Fluids, vol. 28, no. 3, pp. 995–997, 1985. DOI: 10.1063/1.865071.
  • Z. G. Du and E. Bilgen, “Natural convection in vertical cavities with internal heat generating porous medium,” Warme Stoffubertragung – Thermo Fluid Dyn., vol. 27, no. 3, pp. 149–155, 1992. DOI: 10.1007/BF01599928.
  • T. Basak, S. Roy, T. Paul, and I. Pop, “Natural convection in a square cavity filled with a porous medium: Effects of various thermal boundary conditions,” Int. J. Heat Mass Trans., vol. 49, no. 7-8, pp. 1430–1441, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.09.018.
  • J. N. Reddy, An Introduction to the Finite Element Method. NY: McGraw-Hill, 1993.
  • T. Basak, S. Roy, and I. Pop, “Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept,” Int. J. Heat Mass Trans, vol. 52, no. 11–12, pp. 2471–2483, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.01.020.
  • G. Lauriat and V. Prasad, “Non Darcian effects on natural convection in a vertical porous enclosure,” Int. J. Heat Mass Trans, vol. 32, no. 11, pp. 2135–2418, 1989. DOI: 10.1016/0017-9310(89)90120-8.
  • A. C. Baytas and I. Pop, “Free convection in a square porous cavity using a thermal nonequilibrium model,” Int. J. Therm. Sci, vol. 41, no. 9, pp. 861–870, 2002. DOI: 10.1016/S1290-0729(02)01379-0.
  • N. H. Saeid and I. Pop, “Transient free convection in a square cavity filled with a porous medium,” Int. J. Heat Mass Trans, vol. 47, no. 8-9, pp. 1917–1924, 2004. DOI: 10.1016/j.ijheatmasstransfer.2003.10.014.
  • N. H. Saeid and I. Pop, “Natural convection from a discrete heater in a square cavity filled with a porous medium,” J. Porous Media, vol. 8, no. 1, pp. 55–63, 2005. DOI: 10.1615/JPorMedia.v8.i1.50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.