Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 10
184
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of heat and fluid flow in granular layers using high-order compact schemes and volume penalization method

ORCID Icon & ORCID Icon
Pages 737-759 | Received 05 Jun 2019, Accepted 10 Sep 2019, Published online: 20 Sep 2019

References

  • T. Baumann and S. Zunft, “Properties of granular materials as heat transfer and storage medium in CSP application,” Solar Energy Mater. Solar Cells, vol. 143, pp. 38–47, 2015. DOI:10.1016/j.solmat.2015.06.037.
  • Z. Ma, G. C. Glatzmaier, and M. Mehos, “Development of solid particle thermal energy storage for concentrating solar power plants that use fluidized bed technology,” Energy Procedia, vol. 49, pp. 898–907, 2014. DOI:10.1016/j.egypro.2014.03.097.
  • P. Ratuszny, “Thermal energy storage in granular deposits,” presented at the International Conference Energy, Environment and Material Systems (EEMS 2017), Polanica-Zdroj, Poland, 2017. DOI:10.1051/e3sconf/20171901022.
  • S. Lvarez de Miguel, J. Gonzalez-Aguilara, and M. Romero, “100-Wh multi-purpose particle reactor for thermochemical heat storage in concentrating solar power plants,” Energy Procedia, vol. 49, pp. 676–683, 2014. DOI:10.1016/j.egypro.2014.03.073.
  • D. M. Yancy-Caballero, L. T. Biegler, and R. Guirardello, “Large-scale DAE-constrained optimization applied to a modified spoute d b e d reactor for ethylene production from methane,” Comput. Chem. Eng., vol. 113, pp. 162–183, 2018. DOI:10.1016/j.compchemeng.2018.03.017.
  • T. Hoffmann, C. Rieck, A. Bück, M. Peglow, and E. Tsotsas, “Influence of granule porosity during fluidized bed spray granulation,” Procedia Eng., vol. 102, pp. 458–467, 2015. DOI:10.1016/j.proeng.2015.01.189.
  • E. Diez, K. Meyer, A. Bück, E. Tsotsas, and S. Heinrich, “Influence of process conditions on the product properties in a continuous fluidized bed spray granulation process,” Chem. Eng. Res. Des., vol. 139, pp. 104–115, 2018. DOI:10.1016/j.cherd.2018.09.032.
  • E. Szymanek, T. Blaszczyk, M. R. Hall, P. K. Dehdezi, and J. Leszczynski, “Modelling and analysis of heat transfer trough 1D complex granular system,” Granular Matter, vol. 16, no. 5, pp. 687–694, 2014. DOI:10.1007/s10035-014-0517-1.
  • J. M. Hainsworth and L. A. G. Aylmore, “The use of computer assisted tomography to determine spatial distribution of soil water content,” Soil Res., vol. 21, no. 4, pp. 435–443, 1983. DOI:10.1071/SR9830435.
  • W. P. Breugem, V. van Dijk, and R. Delfos, “Flows through real porous media: X-ray computed tomography, experiments, and numerical simulations,” J. Fluids Eng., vol. 136, no. 4, pp. 040902-1–040902-8, 2014. DOI:10.1115/1.4025311.
  • W. Sobieski et al., Granularne osrodki porowate. Katedra Mechaniki i Podstaw Konstrukcji Maszyn. Olsztyn: Wydzia Nauk Technicznych Uniwersytet Warmisko-Mazurski w Olsztynie, 2016.
  • M. Massoudi, “On the heat flux vector for flowing granular materials. I, II,” Math. Methods Appl. Sci., vol. 29, no. 13, pp. 1585–1598, pp. 1599–1613, 2006. DOI:10.1002/mma.745.
  • D. Arumuga Perumala and A. K. Dass, “A review on the development of lattice Boltzmann computation of macro fluid flows and heat transfer,” Alexandria Eng. J., vol. 54, no. 4, pp. 955–971, 2015. DOI:10.1016/j.aej.2015.07.015.
  • W. L. Vargas and J. J. McCarthy, “Heat conduction in granular materials,” AIChE J., vol. 47, no. 5, pp. 1052–1059, 2001. DOI:10.1002/aic.690470511.
  • R. Brociek and D. Slota, “Application and comparison of the intelligent algorithms to solve the fractional heat conduction inverse problem," Inf. Technol. Control, vol. 45, no. 2, pp. 184–194, 2016.
  • T. Blaszczyk, E. Kotela, and J. Leszczyski, “Application of the fractional oscillator equation to simulations of granular flow in a silo,” Comput. Methods Mater. Sci., vol. 11, pp. 64–67, 2011.
  • H. P. A. Calis, J. Nijenhuis, B. C. Paikert, F. M. Dautzenberg, and C. M. van den Bleek, “CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing,” Chem. Eng. Sci., vol. 56, no. 4, pp. 1713–1720, 2001. DOI:10.1016/S0009-2509(00)00400-0.
  • L. W. Rong, K. J. Dong, and A. B. Yu, “Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity,” Chem. Eng. Sci., vol. 99, pp. 44–58, 2013. DOI:10.1016/j.ces.2013.05.036.
  • J. Yang, J. Wu, L. Zhou, and Q. Wang, “Computational study of flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio,” Nuclear Eng. Des., vol. 300, pp. 85–96, 2016. DOI:10.1016/j.nucengdes.2015.10.030.
  • S. Bale, et al., “Spatially resolved mass transfer coefficient for moderate Reynolds number flows in packed beds: Wall effects,” Int. J. Heat Mass Transf., vol. 110, pp. 406–415, 2017. DOI:10.1016/j.ijheatmasstransfer.2017.03.052.
  • B. D. Wood et al., “A comparison of measured and modeled velocity fields for a laminar flow in a porous medium,” Adv. Water Resour., vol. 85, pp. 45–63, 2015. DOI:10.1016/j.advwatres.2015.08.013.
  • A. Sadikin, N. A. M. Yunus, K. Abdullah, and A. N. Mohammed, “Numerical study of flow past a solid sphere at moderate Reynolds number,” Appl. Mech. Mater., vol. 660, pp. 674–678, 2014. DOI:10.4028/www.scientific.net/AMM.660.674.
  • L. Prahl, A. Jadoon, and J. Revstedt, “Interaction between two spheres placed in tandem arrangement in steady and pulsating flow,” Int. J. Multiphase Flow, vol. 35, no. 10, pp. 963–969, 2009. DOI:10.1016/j.ijmultiphaseflow.2009.05.001.
  • Z. Qi, S. Kuang, L. Rong, and A. Yu, “Lattice Boltzmann investigation of the wake effect on the interaction between particle and power-law fluid flow,” Powder Technol., vol. 326, pp. 208–221, 2018. DOI:10.1016/j.powtec.2017.12.015.
  • D. Toghraie, M. Afrand, A. D. Zadeh, and H. A. Akbari, “Numerical investigation on the flow and heat transfer of a multi-lobe particle and equivalent spherical particles in a packed bed with considering the wall effects,” Int. J. Mech. Sci., vol. 138–139, pp. 350–367, 2018. DOI:10.1016/j.ijmecsci.2018.02.019.
  • L. Shiyang, J. Yang, and Q. Wang, “Large eddy simulation of flow and heat transfer past two side-by-side spheres,” Appl. Thermal Eng., vol. 121, pp. 810–819, 2017. DOI:10.1016/j.applthermaleng.2017.04.065.
  • M. Ozgoren, “Flow structures around an equilateral triangle arrangement of three spheres,” Int. J. Multiphase Flow, vol. 53, pp. 54–64, 2013. DOI:10.1016/j.ijmultiphaseflow.2013.02.001.
  • P. Yu, Y. Zeng, T. S. Lee, H. X. Bai, and H. T. Low, “Wake structure for flow past and through a porous square cylinder,” Int. J. Heat Fluid Flow, vol. 31, no. 2, pp. 141–153, 2010. DOI:10.1016/j.ijheatfluidflow.2009.12.009.
  • J. Yang, Q. Wang, M. Zeng, and A. Nakayama, “Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles,” Chem. Eng. Sci., vol. 65, no. 2, pp. 726–738, 2010. DOI:10.1016/j.ces.2009.09.026.
  • S. W. Perng, H. W. Wu, R. H. Wang, and T. C. Jue, “Unsteady convection heat transfer for a porous square cylinder varying cylinder-to-channel height ratio,” Int. J. Thermal Sci., vol. 50, no. 10, pp. 2006–2015, 2011. DOI:10.1016/j.ijthermalsci.2011.02.018.
  • A. G. Dixon, M. Ertan, T. M. Nijemeisland, and E. H. Stitt, “Systematic mesh development for 3D CFD simulation of fixed beds: Single sphere study,” Comput. Chem. Eng., vol. 35, no. 7, pp. 1171–1185, 2011. DOI:10.1016/j.compchemeng.2010.12.006.
  • S. Dhinakaran and J. Ponmozhi, “Heat transfer from a permeable square cylinder to a flowing fluid,” Energy Conversion Manag., vol. 52, no. 5, pp. 2170–2182, 2011. DOI:10.1016/j.enconman.2010.12.027.
  • A. Richter and P. A. Nikrityuk, “New correlations for heat and fluid flow past ellipsoidal and cubic particles at different angles of attack,” Powder Technol., vol. 249, pp. 463–474, 2013. DOI:10.1016/j.powtec.2013.08.044.
  • M. Nijemeisland and A. G. Dixon, “CFD study of fluid flow and wall heat transfer in a fixed bed of spheres,” Amer. Inst. Chem. Eng. J., vol. 50, no. 5, pp. 906–921, 2004.
  • Z. Minhua, D. He, and G. Zhongfeng, “Computational study of flow and heat transfer in fixed beds with cylindrical particles for low tube to particle diameter ratios,” Chem. Eng. Res. Des., vol. 132, pp. 149–161, 2018.
  • E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations,” J. Comput. Phys., vol. 161, no. 1, pp. 35–60, 2000. DOI:10.1006/jcph.2000.6484.
  • R. Mittal and G. Iaccarino, “Immersed boundary methods,” Ann. Rev. Fluid Mech., vol. 37, no. 1, pp. 239–261, 2005. DOI:10.1146/annurev.fluid.37.061903.175743.
  • J. R. Pacheco, A. Pacheco-Vega, T. Rodić, and R. E. Peck, “Numerical simulations of heat transfer and Fluid flow problems using an immersed-boundary finite-volume method on non-staggered grids,” Numeric. Heat Transf. Part B: Fundam., vol. 48, no. 1, pp. 1–24, 2005. DOI:10.1080/10407790590935975.
  • D. Pan, “An immersed boundary method on unstructured Cartesian meshes for incompressible flows with heat transfer,” Numeric. Heat Transf. Part B: Fundam., vol. 49, no. 3, pp. 277–297, 2006. DOI:10.1080/10407790500290709.
  • D. Kinoshita, A. da Silveira Neto, F. P. Mariano, R. A. P. da Silva, and R. Serfaty, “A novel immersed boundary/Fourier pseudospectral method for flows with thermal effects,” Numeric. Heat Transf. Part B: Fundam., vol. 69, no. 4, pp. 312–333, 2016. DOI:10.1080/10407790.2015.1104199.
  • A. Pacheco-Vega, J. R. Pacheco, and T. Rodić, “A general scheme for the boundary conditions in convective and diffusive heat transfer with immersed boundary methods,” J. Heat Transf., vol. 129, no. 11, pp. 1506–1516, 2007. DOI:10.1115/1.2764083.
  • D. Pan, “A general boundary condition treatment in immersed boundary methods for incompressible Navier–Stokes equations with heat transfer,” Numeric. Heat Transf. Part B: Fundam., vol. 61, no. 4, pp. 279–297, 2012. DOI:10.1080/10407790.2012.670560.
  • K. Khadra, P. Angot, S. Parneix, and J. P. Caltagirone, “Fictitious domain approach for numerical modelling of Navier–Stokes equations,” Int. J. Numeric. Methods Fluids, vol. 34, no. 8, pp. 651–684, 2000. DOI:10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.3.CO;2-4.
  • A. Tyliszczak, “A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows,” J. Comput. Phys., vol. 276, pp. 438–467, 2014. DOI:10.1016/j.jcp.2014.07.043.
  • A. Tyliszczak, “High-order compact difference algorithm on half-staggered meshes for low Mach number flows,” Comput. Fluids, vol. 127, pp. 131–145, 2016. DOI:10.1016/j.compfluid.2015.12.014.
  • C. A. J. Fletcher, Computational Techniques for Fluid Dynamics. Berlin Heidelberg: Springer-Verlag, 1991.
  • B. Kadoch, D. Kolomenskiy, P. Angot, and K. Schneider, “A volume penalization method for incompressible flows and scalar advection diffusion with moving obstacles,” J. Computat. Phys., vol. 231, no. 12, pp. 4365–4383, 2012. DOI:10.1016/j.jcp.2012.01.036.
  • A. Tyliszczak, and M. Ksiezyk, “Large eddy simulations of wall-bounded flows using a simplified immersed boundary method and high-order compact schemes,” Int. J. Numeric. Methods Fluids, vol. 87, no. 7, pp. 358–381, 2018. DOI:10.1002/fld.4496.
  • C. Shu, “High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD,” Int. J. Comput. Fluid Dyn., vol. 17, no. 2, pp. 107–118, 2003. DOI:10.1080/1061856031000104851.
  • Z. J. Wang et al., “High-order CFD methods: Current status and perspective,” Int. J. Numeric. Methods Fluids, vol. 72, no. 8, pp. 811–845, 2013. DOI:10.1002/fld.3767.
  • S. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys., vol. 103, no. 1, pp. 16–42, 1992. DOI:10.1016/0021-9991(92)90324-R.
  • A. Tyliszczak and B. J. Geurts, “Parametric analysis of excited round jets – Numerical study, Flow Turbulence Combust., vol. 93, no. 2, pp. 221–247, 2014. DOI:10.1007/s10494-014-9544-6.
  • A. Tyliszczak and B. J. Geurts, “Controlled mixing enhancement in turbulent rectangular jets responding to periodically forced inflow conditions,” J. Turbulence, vol. 16, no. 8, pp. 742–771, 2015. DOI:10.1080/14685248.2015.1027345.
  • A. Tyliszczak, “Parametric study of multi-armed jets,” Int. J. Heat Fluid Flow, vol. 73, p. 82, 2018. DOI:10.1016/j.ijheatfluidflow.2018.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.