Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 11
347
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation on the nucleate pool boiling heat transfer of R134a outside the plain tube

, , , , &
Pages 889-908 | Received 15 Apr 2019, Accepted 20 Sep 2019, Published online: 17 Oct 2019

Reference

  • K. C. Leong, J. Y. Ho, K. K. Wong, “A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces,” Appl. Therm. Eng. vol. 112, pp. 999–1019, 2017.
  • R. L. Webb, C. Pais, “Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries,” Int. J. Heat Mass Transfer, vol. 35, no. 8, pp. 1893–1904, 1992.
  • M. G. Cooper, “Saturation nucleate pool boiling-a simple correlation,” Int. Chem. Eng, Symp, Ser. vol. 86, pp. 785–792, 1984.
  • E. V. Rooyen, J. R. Thome, “Pool boiling data and prediction method for enhanced boiling tubes with R-134a, R-236fa and R-1234ze(E),” Int. J. Refrig. vol. 36, no. 2, pp. 447–455, 2013.
  • F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S, Lavine, Fundamentals of heat and mass transfer, New York: John Wiley & Sons, 2011.
  • I. Perez-Raya, S. G. Kandlikar, “Numerical models to simulate heat and mass transfer at sharp interfaces in nucleate boiling,” Numerical Heat Transfer Applications, vol. 74, pp. 1583–1610, 2018.
  • Y. Sato, B. Niceno, “Pool boiling simulation using an interface tracking method: From nucleate boiling to film boiling regime through critical heat flux,” Int. J. Heat Mass Transfer, vol. 125, pp. 876–890, 2018.
  • R. Sadeghi, M. S. Shadloo, K. Hooman, “Numerical investigation of the natural convection film boiling around elliptical tubes,” Numerical Heat Transfer Applications, vol. 70, pp. 707–722, 2017.
  • B. M. Ningegowda, B. Premachandran, “Numerical investigation of the pool film boiling of water and R134a over a horizontal surface at near-critical conditions,” Numerical Heat Transfer Applications, vol. 71, pp. 44–71, 2017.
  • G. Huber, S. Tanguy, M. Sagan, C. Colin, “Direct numerical simulation of nucleate pool boiling at large microscopic contact angle and moderate Jakob number,” Int. J. Heat Mass Transfer, vol. 113, pp. 662–682, 2017.
  • N. Kurul, M. Z. Podowski, On the modeling of multidimensional effects in boiling channels, Proc. of the 27th National Heat Transfer Conference, Minneapolis, Minnesota, USA, 1991.
  • N. Minocha, J. B. Joshi, A. K. Nayak, P. K. Vijayan, “3D CFD simulation of passive decay heat removal system under boiling conditions: role of bubble sliding motion on inclined heated tubes,” Chem. Eng. Sci. vol. 145, pp. 245–265, 2016.
  • A. Ahmadpour, S. M. A. N. R. Abadi, J. P. Meyer, “Numerical investigation of pool boiling on a staggered tube bundle for different working fluids,” Int. J. Multi. Flow, vol. 104, pp. 89–102, 2018.
  • S. M. A. N. R. Abadi, J. P. Meyer, “Numerical investigation into the inclination effect on conjugate pool boiling and the condensation of steam in a passive heat removal system,” Int. J. Heat Mass Transfer, vol. 122, pp. 1366–1382, 2018.
  • X. B. Zhang, X. Wei, J. Chen, Y. Wang, K. Tang, “CFD simulations and experimental verification on nucleate pool boiling of liquid nitrogen,” Physics Procedia, vol. 67, pp. 569–575, 2015.
  • S. M. A. N. R. Abadi, A. Ahmadpour, J. P. Meyer, “Numerical simulation of pool boiling on smooth, vertically aligned tandem tubes,” Int. J. Therm. Sci. vol. 132, pp. 628–644, 2018.
  • K. Eckhard, K. Bostjan, E. Yury, “CFD modelling of subcooled boiling: Concept, validation and application to fuel assembly design,” Nuc. Eng. Des. vol. 237, pp. 716–731, 2007.
  • J. O. Hinze, Turbulence. New York: McGraw-Hill, 1975.
  • Y. Sato, K. Sekoguchi, “Liquid velocity distribution in two-phase bubble flow,” Int. J. Multi. Flow, vol. 2, pp. 79–95, 1975.
  • R. Clift, J. R. Grace, M. E. Weber, Bubbles, Drops, and Particles. New York: Academic Press, 1978.
  • E. Krepper, B. N. R. Vanga, A. Zaruba, H. M. Prasser, M. A. L. D. Bertodano, “Experimental and numerical studies of void fraction distribution in rectangular bubble columns,” Nuc. Eng. Des. vol. 237, pp. 399–408, 2007.
  • T. R. Auton, “The Lift Force on a Spherical Body in Rotational Flow,” J. Fluid Mechanics, vol. 183, pp. 199–218, 2006.
  • A. Tomiyama, Struggle with computational bubble dynamics, 3rd Int. Conf. on Multiphase Flow, Lyon, France, pp. 8–12, 1998.
  • S. P. Antal, R. T. L. Jr, J. E. Flaherty, “Analysis of phase distribution in fully developed laminar bubbly two-phase flow,” Int. J. Multi. Flow, vol. 17, pp. 635–652, 1991.
  • A. D. Burns, T. Frank, I. Hamill, J. M. Shi, The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows, 5th Int. Conf. on Multiphase Flow, ICMF-2004, Yokohama, Japan, 2004.
  • T. Frank, J. P. Zwart, H. M. Prasser, D. Lucas, “Validation of CFD models for mono-and polydisperse air-water two-phase flows in pipes,” Nuc. Eng. Des. vol. 238, pp. 647–659, 2008.
  • D. Drew, R. Lahey, In Particulate Two-Phase Flow. Boston, MA: ButterworthL-Heinemann, 1993.
  • V. H. D. Valle, D. B. R. Kenning, “Subcooled flow boiling at high heat flux,” Int. J. Heat Mass Transfer, vol. 28, pp. 1907–1920, 1985. DOI: 10.1016/0017-9310(85)90213-3.
  • M. Lemmert, L. M. Chawla, Influence of flow velocity on surface boiling heat transfer coefficient, Heat Transfer in Boiling, E. Hahne and U. Grigull, Eds. Academic Press and Hemisphere, 1977, pp. 237–247.
  • H. C. Ünal, “Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2,” Int. J. Heat Mass Transfer, vol. 19, pp. 643–649, 1976. DOI: 10.1016/0017-9310(76)90047-8.
  • R. Cole, “A photographic study of pool boiling in the region of the critical heat flux,” Aiche Journal, vol. 6, pp. 533–538, 1960. DOI: 10.1002/aic.690060405.
  • W. Ranz, W. R. Marshall, “Evaporation from drops,” Chem. Eng. Prog. Vol. 48, pp. 141–146, 1952.
  • J. Lavieville, E. Quemerais, S. Mimouni, M. Boucker, N. Mechitoua, NEPTUNE CFD V1.0 Theory Manual, EDF. 2005.
  • W. T. Ji, D. C. Zhang, N. Feng, J. F. Guo, M. Numata, G. N. Xi, W. Q. Tao, “Nucleate pool boiling heat transfer of R134a and R134a-PVE lubricant mixtures on smooth and five enhanced tubes,” J. Heat Transfer, vol. 132, no. 11, pp. 11502, 2010.
  • W. T. Ji, M. Numata, Y. L. He, W. Q. Tao, “Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes,” Int. J. Heat Mass Transfer, vol. 86, pp. 744–754, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.020.
  • W.-T. Ji, P.-F. Zhao, C.-Y. Zhao, J. Ding, W.-Q. Tao, “Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability,” Nanosc Microsc Therm. Eng., vol. 22, no. 4, pp. 296–323, 2018. DOI: 10.1080/15567265.2018.1497110.
  • M. Akiyama, F. Tachibana, N. Ogawa, “Effect of pressure on bubble growth in pool boiling,” Bulletin of the Japan Soc. Mech. Eng. vol. 13, pp. 1121–1128, 1969. DOI: 10.1299/jsme1958.12.1121.
  • S. Yamoah, R. Martínez-Cuenca, G. Monrós, S. Chiva, R. Macián-Juan, “Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas–liquid two-phase flow,” Che. Eng. Res. Des. vol. 98, pp. 17–35, 2015. DOI: 10.1016/j.cherd.2015.04.007.
  • P. R. Dominiczak, J. T. Cieśliński, “Circumferential temperature distribution during nucleate pool boiling outside smooth and modified horizontal tubes,” Exp. Therm. Fluid Sci. vol. 33, pp. 173–177, 2009. DOI: 10.1016/j.expthermflusci.2008.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.