Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 11
1,530
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Parametric study and optimization on heat transfer and flow characteristics in a rectangular channel with longitudinal vortex generators

, &
Pages 830-850 | Received 19 Jun 2019, Accepted 23 Sep 2019, Published online: 10 Oct 2019

References

  • L. H. Tang, W. X. Chu, N. Ahmed, and M. Zeng, “A new configuration of winglet longitudinal vortex generator to enhance heat transfer in a rectangular channel,” Appl. Therm. Eng., vol. 104, pp. 74–84, 2016. DOI: 10.1016/j.applthermaleng.2016.05.056.
  • A. Sohankar and A. S. L. Davidson, “Effect of inclined vortex generators on heat transfer enhancement in a three-dimensional channel,” Numer. Heat Transfer, Part A, vol. 39, no. 5, pp. 433–448, 2001. DOI: 10.1080/10407780121572.
  • K. Yakut, B. Sahin, C. Celik, N. Alemdaroglu, and A. Kurnuc, “Effects of tapes with double-sided delta-winglets on heat and vortex characteristics,” Appl. Energy, vol. 80, no. 1, pp. 77–95, 2005. DOI: 10.1016/j.apenergy.2004.03.003.
  • G. N. Xie, Y. D. Song, and T. W. Simon, “Turbulent flow characteristics and heat transfer enhancement in a rectangular channel with elliptical cylinders and protrusions of various heights,” Numer. Heat Transfer, Part A, vol. 72, no. 6, pp. 417–432, 2017. DOI: 10.1080/10407782.2017.1386507.
  • A. Khanjian, C. Habchi, S. Russeil, D. Bougeard, and T. Lemenand, “Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number,” Heat Mass Transfer, vol. 54, no. 5, pp. 1441–1452, 2018. DOI: 10.1007/s00231-017-2244-8.
  • S. Jayavel and S. Tiwari, “Numerical study of flow and heat transfer for flow past inline circular tubes built in a rectangular channel in the presence of vortex generators,” Numer. Heat Transfer, Part A, vol. 54, no. 8, pp. 777–797, 2008. DOI: 10.1080/10407780802359120.
  • J. M. Wu and W. Q. Tao, “Effect of longitudinal vortex generator on heat transfer in rectangular channels,” Appl. Therm. Eng., vol. 37, pp. 67–72, 2012. DOI: 10.1016/j.applthermaleng.2012.01.002.
  • S. Caliskan, “Experimental investigation of heat transfer in a channel with new winglet-type vortex generators,” Int. J. Heat Mass Transfer, vol. 78, pp. 604–614, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.043.
  • A. Pal, D. Bandyopadhyay, G. Biswas, and V. Eswaran, “Enhancement of heat transfer using delta-winglet type vortex generators with a common-flow-up arrangement,” Numer. Heat Transfer, Part A, vol. 61, no. 12, pp. 912–928, 2012. DOI: 10.1080/10407782.2012.677322.
  • L. O. Salviano, D. J. Dezan, and J. I. Yanagihara, “Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization,” Int. J. Heat Mass Transfer, vol. 82, pp. 373–387, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.072.
  • S. Skullong, P. Promvonge, C. Thianpong, and M. Pimsarn, “Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators,” Appl. Therm. Eng., vol. 100, pp. 611–620, 2016. DOI: 10.1016/j.applthermaleng.2016.01.107.
  • T. Zhang, Z. Q. Huang, X. B. Zhang, and C. J. Liu, “Numerical investigation of heat transfer using a novel punched vortex generator,” Numer. Heat Transfer, Part A, vol. 69, no. 10, pp. 1150–1168, 2016. DOI: 10.1080/10407782.2015.1125724.
  • A. Ebrahimi, E. Roohi, and S. Kheradmand, “Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators,” Appl. Therm. Eng., vol. 78, pp. 576–583, 2015. DOI: 10.1016/j.applthermaleng.2014.12.006.
  • M. Khoshvaght-Aliabadi, F. Hormozi, and A. Zamzamian, “Effects of geometrical parameters on performance of plate-fin heat exchanger: vortex-generator as core surface and nanofluid as working media,” Appl. Therm. Eng., vol. 70, no. 1, pp. 565–579, 2014. DOI: 10.1016/j.applthermaleng.2014.04.026.
  • M. Khoshvaght-Aliabadi, S. Zangouel, and F. Hormozi, “Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation,” Int. J. Heat Mass Transfer, vol. 88, pp. 180–192, 2015. DOI: 10.1016/j.ijthermalsci.2014.10.001.
  • A. Arora, P. M. V. Subbarao, and R. S. Agarwal, “Numerical optimization of location of ‘common flow up’ delta winglets for inline aligned finned tube heat exchanger,” Appl. Therm. Eng., vol. 82, pp. 329–340, 2015. DOI: 10.1016/j.applthermaleng.2015.02.071.
  • Y. Jin, Z. Q. Yu, G. H. Tang, Y. L. He, and W. Q. Tao, “Parametric study and multiple correlations of an H-type finned tube bank in a fully developed region,” Numer. Heat Transfer, Part A, vol. 70, no. 1, pp. 64–78, 2016. DOI: 10.1080/10407782.2016.1173433.
  • H. L. Liu, C. C. Fan, Y. L. He, and D. S. Nobes, “Heat transfer and flow characteristics in a rectangular channel with combined delta winglet inserts,” Int. J. Heat Mass Transfer, vol. 134, pp. 149–165, 2019. 004. DOI: 10.1016/j.ijheatmasstransfer.2019.01.
  • R. Beigzadeh, M. Rahimi, M. Parvizi, and S. Eiamsa-Ard, “Application of ANN and GA for the prediction and optimization of thermal and flow characteristics in a rectangular channel fitted with twisted tape vortex generators,” Numer. Heat Transfer, Part A, vol. 65, no. 2, pp. 186–199, 2014. DOI: 10.1080/10407782.2013.826010.
  • R. Beigzadeh, M. Rahimi, O. Jafari, and A. A. Alsairafi, “Computational fluid dynamics assists the artificial neural network and genetic algorithm approaches for thermal and flow modeling of air-forced convection on interrupted plate fins,” Numer. Heat Transfer, Part A, vol. 70, no. 5, pp. 546–565, 2016. DOI: 10.1080/10407782.2016.1177329.
  • R. K. B. Gallegos, and R. N. Sharma, “Heat transfer performance of flag vortex generators in rectangular channels,” Int. J. Therm. Sci., vol. 137, pp. 26–44, 2019. DOI: 10.1016/j.ijthermalsci.2018.11.001.
  • C. H. Wu, H. W. Tang, and Y. T. Yang, “Numerical simulation and optimization of turbulent flows through perforated circular pin fin heat sinks,” Numer. Heat Transfer, Part A, vol. 71, no. 2, pp. 172–188, 2017. DOI: 10.1080/10407782.2016.1264727.
  • G. Lu, and G. Zhou, “Numerical simulation on performances of plane and curved winglet–Pair vortex generators in a rectangular channel and field synergy analysis,” Int. J. Therm. Sci., vol. 109, pp. 323–333, 2016. DOI: 10.1016/j.ijthermalsci.2016.06.024.
  • D. J. Dezan, J. I. Yanagihara, G. Jenovencio, and L. O. Salviano, “Parametric investigation of heat transfer enhancement and pressure loss in louvered fins with longitudinal vortex generators,” Int. J. Therm. Sci., vol. 135, pp. 533–545, 2019. DOI: 10.1016/j.ijthermalsci.2018.09.039.
  • Z. M. Xu, Z. M. Han, J. T. Wang, and Y. F. Li, “The characteristics of heat transfer and flow resistance in a rectangular channel with vortex generators,” Int. J. Heat Mass Transfer, vol. 116, pp. 61–72, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.08.083,.
  • L. Luo et al., “Convergence angle and dimple shape effects on the heat transfer characteristics in a rotating dimple-pin fin wedge duct,” Numer. Heat Transfer, Part A, vol. 74, no. 10, pp. 1611–1635, 2018. DOI: 10.1080/10407782.2018.1543920.
  • L. H. Tang, M. Zeng, and Q. W. Wang, “Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns,” Exp. Therm. Fluid Sci., vol. 33, no. 5, pp. 818–827, 2009. DOI: 10.1016/j.expthermflusci.2009.02.008.
  • L. H. Tang, G. N. Xie, M. Zeng, M. Lin, and Q. W. Wang, “A comparative study of fin-and-tube heat exchangers with various fin patterns,” presented at the Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air, Aug. 2008, Berlin, Germany, pp. 1239–1246. DOI: 10.1115/GT2008-51504.
  • M. Zeng, L. H. Tang, M. Lin, and Q. W. Wang, “Optimization of heat exchangers with vortex-generator fin by Taguchi method,” Appl. Therm. Eng., vol. 30, no. 13, pp. 1775–1783, 2010. DOI: 10.1016/j.applthermaleng.2010.04.009.
  • L. H. Tang, S. C. Tan, P. Z. Gao, and M. Zeng, “Parameters optimization of fin-and-tube heat exchanger with a novel vortex generator fin by Taguchi method,” Heat Transfer Eng., vol. 37, no. 3–4, pp. 369–381, 2016. DOI: 10.1080/01457632.2015.1052715.
  • G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems. New York, USA: McGraw-Hill, 1989.
  • R. K. Roy, A Primer on the Taguchi Method. 2nd ed. New York, USA: Society of Manufacturing Engineers, 2010.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Essex, UK: Pearson Education, 2007.
  • R. L. Webb and S. H. Jung, “Air-side performance of enhanced brazed aluminum heat exchangers,” ASHARE Trans., vol. 98, no. 2, pp. 391–401, 1992.
  • J. M. Wu, and W. Q. Tao, “Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle,” Int. J. Heat Mass Transfer, vol. 51, no. 5–6, pp. 1179–1191, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.03.032.
  • J. Y. Yun, and K. S. Lee, “Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins,” Int. J. Heat Mass Transfer, vol. 43, no. 14, pp. 2529–2539, 2000. DOI: 10.1016/S0017-9310(99)00342-7.