Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 10
292
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A parallel finite volume procedure for phase-field simulation of solidification

, &
Pages 779-798 | Received 31 May 2019, Accepted 23 Sep 2019, Published online: 04 Oct 2019

References

  • G. Tryggvason, A. Esmaeeli, and N. Al-Rawahi, “Direct numerical simulations of flows with phase change,” Comput. Struct., vol. 83, no. 6-7, pp. 445–453, 2005. DOI: 10.1016/j.compstruc.2004.05.021.
  • M. A. Jaafar, D. R. Rousse, S. Gibout, and J.-P. Bédécarrats, “A review of dendritic growth during solidification: Mathematical modeling and numerical simulations,” Renew. Sustain. Energy Rev., vol. 74, pp. 1064–1079, 2017. DOI: 10.1016/j.rser.2017.02.050.
  • L. Tan and N. Zabaras, “A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods,” Comput. Phys., vol. 211, no. 1, pp. 36–63, 2006. DOI: 10.1016/j.jcp.2005.05.013.
  • L. Tan and N. Zabaras, “Modeling the growth and interaction of multiple dendrites in solidification using a level set method,” Comput. Phys., vol. 226, no. 1, pp. 131–155, 2007. DOI: 10.1016/j.jcp.2007.03.023.
  • H. S. Udaykumar, R. Mittal, and P. Rampunggoon, “Interface tracking finite volume method for complex solid-fluid interactions on fixed meshes,” Commun. Numer. Methods Eng., vol. 18, no. 2, pp. 89–97, 2001. DOI: 10.1002/cnm.468.
  • H. S. Udaykumar, L. Mao, and R. Mittal, “A finite volume method sharp interface scheme for dendritic growth simulations: comparison with micorscopic solvability theory,” Numer. Heat Transf. Part B Fund., vol. 42, pp. 1–21, 2002. DOI: 10.1080/10407790190054003.
  • Y. Yang and H. S. Udaykumar, “Sharp interface Cartesian grid method III: Solidification of pure materials and binary solutions,” Comput. Phys., vol. 210, no. 1, pp. 55–74, 2005. DOI: 10.1016/j.jcp.2005.04.024.
  • N. Zabaras, B. Ganapathysubramanian, and L. Tan, “Modelling dendritic solidification with melt convection using the extended finite element method,” Comput. Phys., vol. 218, no. 1, pp. 200–227, 2006. DOI: 10.1016/j.jcp.2006.02.002.
  • M. Reitzle, C. Kieffer-Roth, H. Garcke, and B. Weigand, “A volume-of-fluid method for three-dimensional hexagonal solidification processes,” Comput. Phys., vol. 339, pp. 356–369, 2017. DOI: 10.1016/j.jcp.2017.03.001.
  • P. Rauschenberger et al., “Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water,” Comput. Fluids, vol. 79, pp. 44–52, 2013., DOI: 10.1016/j.compfluid.2013.03.010.
  • K. R. Sultana, S. R. Dehghani, K. Pope, and Y. S. Muzychka, “Numerical techniques for solving solidification and melting phase change problems,” Numer. Heat Transf. Part B Fund., vol. 73, no. 3, pp. 129–145, 2018. DOI: 10.1080/10407790.2017.1422629.
  • I. Perez-Raya and S. G. Kandlikar, “Numerical modeling of interfacial heat and mass transport phenomena during a phase change using ANSYS-Fluent,” Numer. Heat Transf. Part B Fund., vol. 70, no. 4, pp. 322–339, 2016. DOI: 10.1080/10407790.2016.1215708.
  • N. Thakkar, A. Lakdawala, A. Sharma, and S. Karagadde, “Coupled level-set and immersed-boundary method for simulation of filling in a complex geometry based mold,” Numer. Heat Transf. Part B Fund., vol. 74, no. 6, pp. 861–882, 2018. DOI: 10.1080/10407790.2019.1591857.
  • I. Singer-Loginova and H. M. Singer, “The phase field technique for modeling multiphase materials,” Rep. Progr. Phys., vol. 71, no. 10, pp. 106501, 2008. DOI: 10.1088/0034-4885/71/10/106501.
  • S. G. Kim, W. T. Kim, J. S. Lee, M. Ode, and T. Suzuki, “Large scale simulation of dendritic growth in pure undercooled melt by phase field model,” ISIJ Int., vol. 39, no. 4, pp. 335–340, 1999. DOI: 10.2355/isijinternational.39.335.
  • A. F. Ferreira, L. d O. Ferreira, and A. d C. Assis, “Numerical simulation of the solidification of pure melt by a phase field model using an adaptive computational domain,” J. Braz. Soc. Mech. Sci. Eng., vol. 33, no. 2, pp. 125–129, 2011. DOI: 10.1590/S1678-58782011000200002.
  • N. Provatas, N. Goldenfeld, and J. Dantzig, “Adaptive mesh refinement computation of solidification microstructures using dynamic data structures,” Comput. Phys., vol. 148, no. 1, pp. 265–290, 1999. DOI: 10.1006/jcph.1998.6122.
  • J. Rosam, P. K. Jimack, and A. Mullis, “A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification,” Comput. Phys., vol. 225, no. 2, pp. 1271–1287, 2007. DOI: 10.1016/j.jcp.2007.01.027.
  • Y. Li, H. Geun Lee, and J. Kim, “A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth,” J. Cryst. Growth, vol. 321, no. 1, pp. 176–182, 2011. DOI: 10.1016/j.jcrysgro.2011.02.042.
  • M. Ohno, T. Takaki, and Y. Shibuta, “Numerical testing of quantitative phase-field models with different polynomials for isothermal solidification in binary alloys,” Comput. Phys., vol. 335, pp. 621–636, 2017. DOI: 10.1016/j.jcp.2017.01.053.
  • T. Takaki, “Phase-field modeling and simulations of dendrite growth,” ISIJ Int., vol. 54, no. 2, pp. 437–444, 2014. DOI: 10.2355/isijinternational.54.437.
  • T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki, “Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study,” Acta Mater., vol. 118, pp. 230–243, 2016. DOI: 10.1016/j.actamat.2016.07.049.
  • T. Takaki, M. Ohno, T. Shimokawabe, and T. Aoki, “Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal,” Acta Mater., vol. 81, pp. 272–283, 2014. DOI: 10.1016/j.actamat.2014.08.035.
  • T. Takaki, T. Shimokawabe, M. Ohno, A. Yamanaka, and T. Aoki, “Unexpected selection of growing dendrites by very-large-scale phase-field simulation,” J. Cryst. Growth, vol. 382, pp. 21–25, 2013. DOI: 10.1016/j.jcrysgro.2013.07.028.
  • A. F. Ferreira, AJd Silva, and JAd Castro, “Simulation of the solidification of pure nickel via the phase-field method,” Materials Res., vol. 9, no. 4, pp. 349–356, 2006. DOI: 10.1590/S1516-14392006000400002.
  • Z. Guo, and S. M. Xiong, “On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm,” Comput. Phys. Commun., vol. 190, pp. 89–97, 2015. DOI: 10.1016/j.cpc.2015.01.016.
  • A. A. Wheeler, B. T. Murray, and R. J. Schaefer, “Computation of dendrites using a phase field model,” Phys. D, vol. 66, no. 1-2, pp. 243–262, 1993. DOI: 10.1016/0167-2789(93)90242-S.
  • S. V. Pantankar, Numerical Heat Transfer and Fluid Flow. Washington DC, USA: Hemisphere Publishing Corporation, 1980.
  • H. L. Stone, “Iterative solution of implicit approximations of multidimensional partial differential equations,” SIAM J. Numer. Anal., vol. 5, no. 3, pp. 530–558, 1968. DOI: 10.1137/0705044.
  • Y. Saad and M. H. Schultz, “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. vol. 7, no. 3, pp. 856–869, 1986. DOI: 10.1137/0907058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.