Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 12
224
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Kinetics of freezing and melting of encapsulated phase change materials with effective convection: Experiments and simulations

, , &
Pages 909-924 | Received 28 Jun 2019, Accepted 24 Sep 2019, Published online: 10 Oct 2019

References

  • H. Mehling and L. Cabeza, Heat and Cold Storage with PCM. Berlin, Germany: Springer, 2008.
  • J. Xu, R. Z. Wang, and Y. Li, “A review of available technologies for seasonal thermal energy storage,” Solar Energy, vol. 103, pp. 610–638, 2014. DOI: 10.1016/j.solener.2013.06.006.
  • I. Sarbu and C. Sebarchievici, “A comprehensive review of thermal energy storage,” Sustainability, vol. 10, pp. 191, 2018.
  • F. Souayfane, F. Fardoun, and P.-H. Biwole, “Phase change materials (PCM) for cooling applications in buildings: a review,” Energy Build., vol. 129, pp. 396, 2016. DOI: 10.1016/j.enbuild.2016.04.006.
  • H. P. Garg, S. C. Mullick, and A. K. Bhargava, Solar Thermal Energy Storage. Boston, MA: Springer, 2013.
  • D. Pal and Y. Joshi, “Application of phase change materials for passive thermal control of plastic quad flat packages: a computational study,” Numer. Heat Transf. Part A Appl., vol. 30, no. 1, pp. 19–34, 1996. DOI: 10.1080/10407789608913826.
  • K. Du, J. Calautit, Z. Wang, Y. Wu, and H. Liu, “A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges,” Appl. Energy, vol. 220, pp. 242, 2018. DOI: 10.1016/j.apenergy.2018.03.005.
  • M. M. A. Khan, R. Saidur, and F. A. Al-Sulaiman, “A review for phase change materials (PCMs) in solar absorption refrigeration systems,” Renew. Sustain. Energy Rev., vol. 76, pp. 105, 2017. DOI: 10.1016/j.rser.2017.03.070.
  • CIBSE Journal. Jul. 2011, 34–37.
  • N. S. Dhaidan and J. M. Khodadadi, “Melting and convection of phase change materials in different shape containers: a review,” Renew. Sustain. Energ. Rev., vol. 43, pp. 449–477, 2015. DOI: 10.1016/j.rser.2014.11.017.
  • M. Jurkowska and I. Szczygieł, “Review on properties of microencapsulated phase change materials slurries (mPCMS),” Appl. Therm. Eng., vol. 98, pp. 365, 2016. DOI: 10.1016/j.applthermaleng.2015.12.051.
  • K. Sasaguchi, A. Ishihara, and H. Zhang, “Numerical study on utilization of melting of phase change material for cooling of a heated surface at a constant rate,” Numer. Heat Transf. Part A: Appl., vol. 29, no. 1, pp. 19, 1996. DOI: 10.1080/10407789608913776.
  • E. Assis, L. Katsman, G. Ziskind, and R. Letan, “Numerical and experimental study of melting in a spherical shell,” Int. J. Heat Mass Transf., vol. 50, no. 9-10, pp. 1790, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.10.007.
  • F. L. Tan, “Constrained and unconstrained melting inside a sphere,” Int. Commun. Heat Mass Transf., vol. 35, no. 4, pp. 466, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.09.008.
  • F. L. Tan, S. F. Hosseinizadeh, J. M. Khodadadi, and L. Fan, “Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule,” Int. J. Heat Mass Transf. vol. 52, no. 15-16, pp. 3464–3472, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.02.043.
  • N. Calvet, X. Py, R. Olivès, J.-P. Bédécarrats, P. P. Dumas, and F. Jay, “Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity,” Energy, vol. 55, pp. 956–964, 2013. DOI: 10.1016/j.energy.2013.03.078.
  • N. A. M. Amin, F. Bruno, and M. Belusko, “Effective thermal conductivity for melting in PCM encapsulated in a sphere,” Appl. Energy, vol. 122, pp. 280–287, 2014. DOI: 10.1016/j.apenergy.2014.01.073.
  • L.-W. Fan et al., “An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage,” Appl. Therm. Eng., vol. 100, pp. 1063–1075, 2016. DOI: 10.1016/j.applthermaleng.2016.02.125.
  • Z. Liao, C. Xu, Y. Ren, F. Gao, X. Ju, and X. Du, “A novel effective thermal conductivity correlation of the PCM melting in spherical PCM encapsulation for the packed bed TES system,” Appl. Therm. Eng., vol. 135, pp. 116–122, 2018. DOI: 10.1016/j.applthermaleng.2018.02.048.
  • M. Sheikholeslami, A. Ghasemi, Z. Li, A. Shafee, and S. Saleem, “Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins,” Int. J. Heat Mass Transf., vol. 130, pp. 1322–1342, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.020.
  • Q. T. Pham, “A note on some finite-difference methods for heat conduction with phase change,” Numer. Heat Transf., vol. 11, no. 3, pp. 353–359, 1987. DOI: 10.1080/10407798708552550.
  • C. K. Chun and S. O. Park, “A fixed-grid finite-difference method for phase-change problems,” Numer. Heat Transf. Part B Fundam., vol. 38, pp. 59–73, 2000.
  • B. Ghasemi, and M. Molki, “Melting of unfixed solids in square cavities,” Int. J. Heat Fluid Flow, vol. 20, no. 4, pp. 446–452, 1999. DOI: 10.1016/S0142-727X(99)00025-9.
  • B. J. Jones, D. Sun, S. Krishnan, and S. V. Garimella, “Experimental and numerical study of melting in a cylinder,” Int. J. Heat Mass Transf., vol. 49, no. 15-16, pp. 2724–2738, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.01.006.
  • H. Shmueli, G. Ziskind, and R. Letan, “Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments,” Int. J. Heat Mass Transf., vol. 53, no. 19-20, pp. 4082–4091, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.05.028.
  • S. Wang, A. Faghri, and L. T. Bergman, “Transient natural convection in vertical annuli: numerical modeling and heat transfer correlation,” Numer. Heat Transf. Part A Appl., vol. 61, pp. 823–836, 2012. DOI: 10.1080/10407789408955960.
  • S. Riahi, W. Y. Saman, F. Bruno, and N. H. S. Tay, “Numerical modeling of inward and outward melting of high temperature PCM in a vertical cylinder,” AIP Conf. proc., vol. 1734, pp. 050039, 2016.
  • G. D. Raithby, and K. G. T. Hollands, “A general method of obtaining approximate solutions to laminar and turbulent free convection problems,” Adv. Heat Transf., vol. 11, pp. 265–315, 1975.
  • T. H. Kuehn and R. J. Goldstein, “Correlating equations for natural convection heat transfer between horizontal circular cylinders,” Int. J. Heat Mass Transf., vol. 19, no. 10, pp. 1127–1134, 1976. DOI: 10.1016/0017-9310(76)90145-9.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a hollow horizontal cylinder with external longitudinal fins: a numerical approach,” Numer. Heat Transf. Part A Appl., vol. 74, no. 7, pp. 1405–1423, 2018. DOI: 10.1080/10407782.2018.1505096.
  • I. D. Witt, Fundamentals of Heat and Mass Transfer. Hoboken, NJ: John Wiley & Sons, 1990.
  • M. Lacroix, “Numerical simulation of shell-and-tube latent heat thermal energy storage unit,” Solar Energy, vol. 50, no. 4, pp. 357–367, 1993. DOI: 10.1016/0038-092X(93)90029-N.
  • W. R. Chen, “A numerical study of laminar free convection heat transfer between inner sphere and outer vertical cylinder,” Int. J. Heat Mass Transf., vol. 50, no. 13-14, pp. 2656–2666, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.11.046.
  • W. R. Chen, “Natural convection heat transfer between inner sphere and outer vertically eccentric cylinder,” Int. J. Heat Mass Transf., vol. 53, no. 23-24, pp. 5147–5147, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.07.048.
  • A. M. Puertas, M. S. Romero-Cano, F. J. de Las Nieves, S. Rosiek, and F. J. Batlles, “Simulations of melting of encapsulated CaCl2·6H2O for thermal energy storage technologies,” Energies, vol. 10, pp. 568, 2017. DOI: 10.3390/en10040568.
  • W. J. Minkowycz, E. M. Sparrow, and J. Y. Murthy, Handbook of Numerical Heat Transfer. Chapter 8. New Jersey: John Wiley & Sons, 2009.
  • D. Frenkel and B. Smit, Understanding Molecular Simulation. San Diego: Academic Press, 2002.
  • ERA-Net LAC project. Available: http://www.pcmsol.com.
  • F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. New Jersey: John Wiley & Sons, 2007.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Washington, D.C.: Hemisphere Publishing Corporation, 1980.
  • P. A. Nikrityuk, Computational Thermo-Fluid Dynamics. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co., 2011.
  • A. Tarokh, A. A. Mohamad, and L. Jiang, “Simulation of conjugate heat transfer using the lattice Boltzmann method,” Numer. Heat Transf. Part A Appl., vol. 63, no. 3, pp. 159–178, 2013. DOI: 10.1080/10407782.2012.725009.
  • D. Chiappini, A. Festuccia, and G. Bella, “Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media,” Numer. Heat Transf. Part A Appl., vol. 73, no. 5, pp. 291–306, 2018. DOI: 10.1080/10407782.2018.1444868.
  • Y. Asako and M. Faghri, “Effect of density change on melting of unfixed rectangular phase-change material under low-gravity environment,” Numer. Heat Transf. Part A Appl., vol. 36, no. 8, pp. 825–828, 1999. DOI: 10.1080/104077899274471.
  • S. C. McCutcheon, J. L. Martin, and T. O. Barnwell, Water Quality in Handbook of Hydrology. Edited by D. R. Maidment. New York: McGrawhill, 1993.
  • J. M. Khodadadi and Y. Zhang, “Effects of buoyancy-driven convection on melting within spherical containers,” Int. J. Heat Mass Transf. vol. 44, no. 8, pp. 1605–1618, 2001. DOI: 10.1016/S0017-9310(00)00192-7.
  • M. D. Muhammad, O. Badr, and H. Yeung, “Validation of a CFD melting and solidification model for phase change in vertical cylinders,” Numer. Heat Transf. Part A Appl., vol. 68, no. 5, pp. 501–511, 2015. DOI: 10.1080/10407782.2014.994432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.