Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 76, 2019 - Issue 12
396
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Modeling and optimizing of anode-supported solid oxide fuel cells with gradient anode: Part I. Model description and validation by experiments

, , , , &
Pages 925-948 | Received 26 Jun 2019, Accepted 30 Sep 2019, Published online: 14 Oct 2019

References

  • J. L. Yuan, M. Rokni, and B. Sundén, “Buoyancy effects on developing laminar gas flow and heat transfer in a rectangular fuel cell duct,” Numer. Heat Transfer A, vol. 39, no. 8, pp. 801–822, 2001. DOI: 10.1080/10407780152121155.
  • B. S. Prakash, S. S. Kumar, and S. T. Aruna, “Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review,” Renew. Sust. Energ. Rev., vol. 36, pp. 149–179, 2014. DOI: 10.1016/j.rser.2014.04.043.
  • Q. W. Shen et al., “Analysis of heat and mass transport characteristics in anode-supported solid oxide fuel cells at various operating conditions,” Numer. Heat Transfer A, vol. 75, no. 8, pp. 509–522, 2019. DOI: 10.1080/10407782.2019.1608773.
  • N. Q. Minh, “Solid oxide fuel cell technology-features and applications,” Solid State Ionics, vol. 174, no. 1–4, pp. 271–277, 2004. DOI: 10.1016/j.ssi.2004.07.042.
  • V. A. C. Haanappel et al., “Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs,” J. Power Sources, vol. 141, no. 2, pp. 216–226, 2005. DOI: 10.1016/j.jpowsour.2004.09.016.
  • P. W. Li, S. P. Chen, and M. K. Chyu, “To achieve the best performance through optimization of gas delivery and current collection in solid oxide fuel cells,” J. Fuel Cell Sci. Tech., vol. 3, no. 2, pp. 188–194, 2006. DOI: 10.1115/1.2174068.
  • R. J. Gorte and J. M. Vohs, “Nanostructured anodes for solid oxide fuel cells,” Curr. Opin. Colloid Interface Sci., vol. 14, no. 4, pp. 236–244, 2009. DOI: 10.1016/j.cocis.2009.04.006.
  • J. G. Kong et al., “Ni-YSZ gradient anodes for anode-supported SOFCs,” J. Power Sources, vol. 166, no. 2, pp. 337–342, 2007. DOI: 10.1016/j.jpowsour.2006.12.042.
  • C. Jin, Y. C. Mao, N. Q. Zhang, and K. N. Sun, “Fabrication and characterization of Ni-SSZ gradient anodes/SSZ electrolyte for anode-supported SOFCs by tape casting and co-sintering technique,” Int. J. Hydrogen Energy, vol. 40, no. 26, pp. 8433–8441, 2015. DOI: 10.1016/j.ijhydene.2015.04.088.
  • C. M. An, J. H. Song, I. Kang, and N. Sammes, “The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell,” J. Power Sources, vol. 195, no. 3, pp. 821–824, 2010. DOI: 10.1016/j.jpowsour.2009.08.043.
  • S. Lee, I. Park, H. Lee, and D. Shin, “Continuously gradient anode functional layer for BCZY based proton-conducting fuel cells,” Int. J. Hydrogen Energy, vol. 39, no. 26, pp. 14342–14348, 2014.
  • M. Sukeshini, F. Meisenkothen, P. Gardner, and T. L. Reitz, “Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy,” J. Power Sources, vol. 224, pp. 295–303, 2013. DOI: 10.1016/j.jpowsour.2012.09.094.
  • J. F. Beltran-Lopez, M. A. Laguna-Bercero, J. Gurauskis, and J. I. Peña, “Fabrication and characterization of graded anodes for anode-supported solid oxide fuel cells by tape casting and lamination,” Electrocatalysis, vol. 5, no. 3, pp. 273–278, 2014. DOI: 10.1007/s12678-014-0193-2.
  • X. M. Hao et al., “Co-tape casting fabrication, field assistant sintering and evaluation of a coke resistant La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode supported solid oxide fuel cell,” Int. J. Hydrogen Energy, vol. 40, no. 37, pp. 12790–12797, 2015. DOI: 10.1016/j.ijhydene.2015.07.126.
  • P. Fu, M. Zeng, and Q. W. Wang, “Effect of gradient anode on mass transfer performance for anode-supported planar solid oxide fuel cells,” presented at the ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, AZ, USA, V06BT08A022, 2016.
  • S. J. Lee, C. H. Jung, K. B. Shim, and C. S. Yi, “Microstructural analysis of the functionally graded electrodes in solid oxide fuel cells,” J. Ceram. Process. Res., vol. 13, pp. 810–815, 2012.
  • M. Andersson and B. Sundén, “Solid oxide fuel cell material structure grading in the direction normal to the electrode/electrolyte interface using COMSOL Multiphysics®,” COMSOL Conference Cambridge 2014, Cambridge, UK, 2014.
  • J. X. Shi and X. J. Xue, “CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties,” Electrochim. Acta, vol. 55, no. 18, pp. 5263–5273, 2010. DOI: 10.1016/j.electacta.2010.04.060.
  • Y. X. Shi et al., “Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiple layers SOFC cell: part I. Experiments, model development and validation,” J. Power Sources, vol. 172, no. 1, pp. 235–245, 2007.
  • Y. X. Shi et al., “Modeling of an anode-supported Ni-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiple layers SOFC cell: part II. Simulations and discussion,” J. Power Sources, vol. 172, no. 1, pp. 246–252, 2007.
  • D. Simwonis, F. Tietz, and D. Stöver, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells,” Solid State Ionics, vol. 132, no. 3–4, pp. 241–251, 2000. DOI: 10.1016/S0167-2738(00)00650-0.
  • Y. Luo, Y. X. Shi, W. Y. Li, M. Ni, and N. S. Cai, “Elementary reaction modeling and experimental characterization of solid oxide fuel-assisted steam electrolysis cells,” Int. J. Hydrogen Energy, vol. 39, no. 20, pp. 10359–10373, 2014. DOI: 10.1016/j.ijhydene.2014.05.018.
  • S. Li, J. L. Yuan, G. N. Xie, and B. Sundén, “Numerical investigation of transport phenomena in high temperature proton exchange membrane fuel cells with different flow field designs,” Numer. Heat Transfer A, vol. 72, no. 11, pp. 807–820, 2017. DOI: 10.1080/10407782.2017.1412221.
  • W. Y. Li, Y. X. Shi, Y. Luo, and N. S. Cai, “Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: the effects of microstructure and thickness,” Int. J. Hydrogen Energy, vol. 39, no. 25, pp. 13738–13750, 2014. DOI: 10.1016/j.ijhydene.2014.03.014.
  • D. H. Jeon, “A comprehensive CFD model of anode-supported solid oxide fuel cells,” Electrochim. Acta, vol. 54, no. 10, pp. 2727–2736, 2009. DOI: 10.1016/j.electacta.2008.11.048.
  • D. A. Nield and A. Bejan, Convection in Porous Media, vol. 3, 4th ed. New York: Springer Science & Business Media, 2006.
  • B. Todd and J. B. Young, “Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling,” J. power Sources, vol. 110, no. 1, pp. 186–200, 2002. DOI: 10.1016/S0378-7753(02)00277-X.
  • A. E. Richards, M. G. McNeeley, R. J. Kee, and N. P. Sullivan, “Gas transport and internal-reforming chemistry in Ni-YSZ and ferritic-steel supports for solid-oxide fuel cells,” J. Power Sources, vol. 196, no. 23, pp. 10010–10018, 2011. DOI: 10.1016/j.jpowsour.2011.07.086.
  • C. Wang, “Microscale correlations adoption in solid oxide fuel cell,” J. Fuel Cell Sci. Tech, vol. 12, no. 4, pp. 041006, 2015. DOI: 10.1115/1.4031153.
  • M. Andersson, H. Paradis, J. L. Yuan, and B. Sundén, “Modeling analysis of different renewable fuels in an anode supported SOFC,” J. Fuel Cell Sci. Tech., vol. 8, no. 3, pp. 031013, 2011. DOI: 10.1115/1.4002618.
  • E. N. Fuller, P. D. Schettler, and J. C. Giddings, “A new method for prediction coefficients of binary gas-phase diffusion,” Ind. Eng. Chem., vol. 58, no. 5, pp. 18–27, 1966. DOI: 10.1021/ie50677a007.
  • J. Deseure, Y. Bultel, L. Dessemond, and E. Siebert, “Theoretical optimisation of a SOFC composite cathode,” Electrochim. Acta, vol. 50, no. 10, pp. 2037–2046, 2005. DOI: 10.1016/j.electacta.2004.09.012.
  • M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012–1022, 2006. DOI: 10.1016/j.jpowsour.2006.05.055.
  • V. S. Bagotsky, Fundamentals of Electrochemistry, vol. 44, 2nd ed. Hoboken: John Wiley & Sons Inc, 2005.
  • C. Han and Z. Chen, “Numerical simulation for the effect of vaporization intensity in membrane on the performance of PEM fuel cell,” Numer. Heat Transfer A, vol. 73, no. 3, pp. 177–194, 2018. DOI: 10.1080/10407782.2017.1421370.
  • L. Andreassi, G. Rubeo, S. Ubertini, P. Lunghi, and R. Bove, “Experimental and numerical analysis of a radial flow solid oxide fuel cell,” Int. J. Hydrogen Energy, vol. 32, no. 17, pp. 4559–4574, 2007. DOI: 10.1016/j.ijhydene.2007.07.047.
  • P. Yuan and S. F. Liu, “Numerical analysis of temperature and current density distribution of a planar solid oxide fuel cell unit with nonuniform inlet flow,” Numer. Heat Transfer A, vol. 51, no. 10, pp. 941–957, 2007. DOI: 10.1080/10407780601009066.
  • J. X. Shi and X. J. Xue, “Modeling approach to identify physically distinct processes convoluted in electrochemical impedance spectra for proton-conducting solid oxide fuel cells,” J. Appl. Electrochem., vol. 44, no. 6, pp. 683–694, 2014. DOI: 10.1007/s10800-014-0682-2.
  • P. Costamagna, P. Costa, and V. Antonucci, “Micro-modelling of solid oxide fuel cell electrodes,” Electrochim. Acta, vol. 43, no. 3–4, pp. 375–394, 1998. DOI: 10.1016/S0013-4686(97)00063-7.
  • M. M. Hussain, X. Li, and I. Dincer, “A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells,” J. Power Sources, vol. 189, no. 2, pp. 916–928, 2009. DOI: 10.1016/j.jpowsour.2008.12.121.
  • P. Francus, “An image-analysis technique to measure grain-size variation in thin sections of soft clastic sediments,” Sediment. Geol., vol. 121, no. 3–4, pp. 289–298, 1998. DOI: 10.1016/S0037-0738(98)00078-5.
  • M. Zeng, J. L. Yuan, J. Zhang, B. Sundén, and Q. W. Wang, “Investigation of thermal radiation effects on solid oxide fuel cell performance by a comprehensive model,” J. Power Sources, vol. 206, pp. 185–196, 2012. DOI: 10.1016/j.jpowsour.2012.01.130.
  • J. R. Ferguson, J. M. Fiard, and R. Herbin, “Three-dimensional numerical simulation for various geometries of solid oxide fuel cells,” J. Power Sources, vol. 58, no. 2, pp. 109–122, 1996. DOI: 10.1016/0378-7753(95)02269-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.