Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 1
520
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Droplet oscillation mechanism and its free surface behavior on impacting a heated hydrophobic surface at low Weber numbers

ORCID Icon, , &
Pages 13-32 | Received 11 Jun 2019, Accepted 07 Oct 2019, Published online: 21 Oct 2019

References

  • M. Aamir, L. Qiang, W. Hong, Z. Xun, J. Wang, and M. Sajid, “Transient heat transfer performance of stainless steel structured surfaces combined with air-water spray evaporative cooling at high temperature scenarios,” Appl. Therm. Eng., vol. 115, pp. 418–434, 2017. DOI: 10.1016/j.applthermaleng.2016.12.126.
  • P. Fauchais, “Current status and future directions of thermal spray coatings and techniques,” in Future Development of Thermal Spray Coatings. N. Espallargas, Ed., Woodhead Publishing, 2015, pp. 17–49.
  • J. Kim, “Spray cooling heat transfer: The state of the art,” Int. J. Heat Fluid Flow, vol. 28, no. 4, pp. 753–767, 2007. DOI: 10.1016/j.ijheatfluidflow.2006.09.003.
  • B. Li, and E. J. Lavernia, “Spray-forming,” vol. 2, Pergamon Materials Series. Amsterdam: Pergamon, 1999, pp. 153–193
  • H. Wijshoff, “Drop Dynamics in the inkjet printing process,” Curr. Opin. Colloid Interface Sci., vol. 36, pp. 20–27, 2018. DOI: 10.1016/j.cocis.2017.11.004.
  • Y. Suh, and G. Son, “A level-set method for simulation of a thermal inkjet process,” Numer. Heat Transf., Part B: Fund., vol. 54, no. 2, pp. 138–156, 2008. DOI: 10.1080/10407790802182661.
  • S. Fathi, and P. Dickens, “Challenges in drop-on-drop deposition of reactive molten nylon materials for additive manufacturing,” J. Mater. Process. Technol., vol. 213, no. 1, pp. 84–93, 2013. DOI: 10.1016/j.jmatprotec.2012.08.006.
  • B. Derby, “Additive manufacture of ceramics components by inkjet printing,” Engineering, vol. 1, no. 1, pp. 113–123, 2015. DOI: 10.15302/J-ENG-2015014.
  • L. E. Murr, and W. L. Johnson, “3D metal droplet printing development and advanced materials additive manufacturing,” J. Mater. Res. Technol., vol. 6, no. 1, pp. 77–89, 2017. DOI: 10.1016/j.jmrt.2016.11.002.
  • T.-Y. Han, J.-C. Yang, J. Zhang, and M.-J. Ni, “Three-dimensional numerical simulation on the spreading characteristics of a liquid metal droplet in a horizontal magnetic field,” Numer. Heat Transfer, Part A: Appl., vol. 74, no. 12, pp. 1786–1803, 2018. DOI: 10.1080/10407782.2018.1541293.
  • A. Moreira, A. Moita, and M. Panão, “Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?” Prog. Energy Combust. Sci., vol. 36, no. 5, pp. 554–580, 2010. DOI: 10.1016/j.pecs.2010.01.002.
  • M. Panão, and A. L. N. Moreira, “Flow characteristics of spray impingement in PFI injection systems,” Exp. Fluids, vol. 39, no. 2, pp. 364–374, 2005. DOI: 10.1007/s00348-005-0996-2.
  • S. S. Sazhin, “Modelling of fuel droplet heating and evaporation: recent results and unsolved problems,” Fuel, vol. 196, pp. 69–101, 2017. DOI: 10.1016/j.fuel.2017.01.048.
  • L. Shui, J. C. Eijkel, and A. v d Berg, “Multiphase flow in microfluidic systems – Control and applications of droplets and interfaces,” Adv. Colloid Interface Sci., vol. 133, no. 1, pp. 35–49, 2007. DOI: 10.1016/j.cis.2007.03.001.
  • R. Caulfield, F. Fang, and M. K. Tiwari, “Drops, jets and high-resolution 3D printing: fundamentals and applications,” in Applications Paradigms of Droplet and Spray Transport: Paradigms and Applications. Energy, Environment, and Sustainability. Singapore: Springer, 2018.
  • X. Zhong, A. Crivoi, and F. Duan, “Sessile nanofluid droplet drying,” Adv. Colloid Interface Sci., vol. 217, pp. 13–30, 2015. DOI: 10.1016/j.cis.2014.12.003.
  • G. Liang, and I. Mudawar, “Review of drop impact on heated walls,” Int. J. Heat Mass Transf., vol. 106, pp. 103–126, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.031.
  • M. Rein, “Phenomena of liquid drop impact on solid and liquid surfaces,” Fluid Dyn. Res., vol. 12, no. 2, pp. 61–93, 1993. DOI: 10.1016/0169-5983(93)90106-K.
  • A. L. Yarin, “Drop impact dynamics: Splashing, spreading, receding, bouncing,” Annu. Rev. Fluid Mech., vol. 38, no. 1, pp. 159–192, 2006. DOI: 10.1146/annurev.fluid.38.050304.092144.
  • A. Worthington, “The Splash of a Drop,” Reprint of a Discourse delivered at the Royal Institution of Great Britain, pp. 9–96 18 May 1894.
  • D. A. Bolleddula, A. Berchielli, and A. Aliseda, “Impact of a heterogeneous liquid droplet on a dry surface: Application to the pharmaceutical industry,” Adv. Colloid Interface Sci., vol. 159, no. 2, pp. 144–159, 2010. DOI: 10.1016/j.cis.2010.06.003.
  • J. Fukai, Z. Zhao, D. Poulikakos, C. M. Megaridis, and O. Miyatake, “Modeling of the deformation of a liquid droplet impinging upon a flat surface,” Phys. Fluids A: Fluid Dyn., vol. 5, no. 11, pp. 2588–2599, 1993. DOI: 10.1063/1.858724.
  • Y. Yonemoto, and T. Kunugi, “Analytical consideration of liquid droplet impingement on solid surfaces,” Scientific Rep., vol. 7, no. 1, pp. 1–11, 2017. DOI: 10.1038/s41598-017-02450-4.
  • I. S. Bayer, and C. M. Megaridis, “Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics,” J. Fluid Mech., vol. 558, pp. 415–449, 2006. DOI: 10.1017/S0022112006000231.
  • V. Bertola, and M. Wang, “Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 481, no. 481, pp. 600–608, 2015. DOI: 10.1016/j.colsurfa.2015.05.052.
  • P. R. Gunjal, V. V. Ranade, and R. V. Chaudhari, “Dynamics of drop impact on solid surfaces: experiments and VOF simulations,” AIChE J., vol. 51, no. 1, pp. 59–78, 2005. DOI: 10.1002/aic.10300.
  • R. M. Manglik, M. A. Jog, S. K. Gande, and V. Ravi, “Damped harmonic system modeling of post-impact drop-spread dynamics on a hydrophobic surface,” Phys. Fluids, vol. 25, no. 8, p. 082112, 2013. DOI: 10.1063/1.4819243.
  • R. Rioboo, M. Marengo, and C. Tropea, “Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids, vol. 33, no. 1, pp. 112–124, 2002. DOI: 10.1007/s00348-002-0431-x.
  • Y. Guo, S. Shen, and S. Quan, “Numerical simulation of dynamics of droplet impact on heated flat solid surface,” Int. J. Low-Carb. Technol., vol. 8, no. 2, pp. 134–139, 2013. DOI: 10.1093/ijlct/cts010.
  • J. Fukai et al., “Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling,” Phys. Fluids, vol. 7, no. 2, pp. 236–247, 1995. DOI: 10.1063/1.868622.
  • G. Guggilla, A. Pattamatta, and R. Narayanaswamy, “Numerical investigation into the evaporation dynamics of drop-on-drop collisions over heated wetting surfaces,” Int. J. Heat Mass Transf., vol. 123, pp. 1050–1067, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.029.
  • M. Francois, and W. Shyy, “Computations of drop dynamics with the immersed boundary method, part 2: drop impact and heat transfer,” Numer. Heat Transf.: Part B: Fund., vol. 44, no. 2, pp. 119–143, 2003. DOI: 10.1080/713836348.
  • K. Yokoi, D. Vadillo, J. Hinch, and I. Hutchings, “Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface,” Phys. Fluids, vol. 21, no. 7, p. 072102, 2009. DOI: 10.1063/1.3158468.
  • V. Beregeron, and D. Quéré, “Water droplets make an impact,” Physics World, vol. 14, no. 5, pp. 27–31, 2001. DOI: 10.1088/2058-7058/14/5/30.
  • X. Zhang, and O. A. Basaran, “Dynamic surface tension effects in impact of a drop with a solid surface,” J. Colloid Interface Sci., vol. 187, no. 1, pp. 166–178, 1997. DOI: 10.1006/jcis.1996.4668.
  • L. Xu, W. W. Zhang, and S. R. Nagel, “Drop splashing on a dry smooth surface,Phys. Rev. Lett., vol. 94, no. 18, pp. 184505 2005. DOI: 10.1103/PhysRevLett.94.184505.
  • G. Yali, W. Lan, S. Shengqiang, and C. Guiying, “Simulation of dynamic characteristics of droplet impact on liquid film,” Int. J. Low-Carb. Technol., vol. 9, no. 2, pp. 150–156, 2014. DOI: 10.1093/ijlct/ctu019.
  • M. Pasandideh-Fard, S. D. Aziz, S. Chandra, and J. Mostaghimi, “Cooling effectiveness of a water drop impinging on a hot surface,” Int. J. Heat Fluid Flow, vol. 22, no. 2, pp. 201–210, 2001. DOI: 10.1016/S0142-727X(00)00086-2.
  • L. H. J. Wachters, and N. A. J. Westerling, “The heat transfer from a hot wall to impinging water drops in the spheroidal state,” Chem. Eng. Sci., vol. 21, no. 11, pp. 1047–1056, 1966. DOI: 10.1016/0009-2509(66)85100-X.
  • N. Hatta, H. Fujimoto, and H. Takuda, “Deformation process of a water droplet impinging on a solid surface,” Trans. ASME, J. Fluids Eng., vol. 117, no. 3, pp. 394–401, 1995. DOI: 10.1115/1.2817275.
  • J. Wu, J. J. Huang, and W. W. Yan, “Lattice Boltzmann investigation of droplets impact behaviors onto a solid substrate,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 484, pp. 318–328, 2015. DOI: 10.1016/j.colsurfa.2015.07.043.
  • S. Ganesan, “On the dynamic contact angle in simulation of impinging droplets with sharp interface methods,” Microfluid. Nanofluid., vol. 14, no. 3-4, pp. 615–625, 2013. DOI: 10.1007/s10404-012-1080-x.
  • I. Malgarinos, N. Nikolopoulos, M. Marengo, C. Antonini, and M. Gavaises, “VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model,” Adv. Colloid Interface Sci., vol. 212, pp. 1–20, 2014. DOI: 10.1016/j.cis.2014.07.004.
  • G. Liang, X. Mu, Y. Guo, and S. Shen, “Flow and heat transfer during a single drop impact on a liquid film,” Numer. Heat Transf., Part B: Fund., vol. 69, no. 6, pp. 575–582, 2016. DOI: 10.1080/10407790.2016.1173496.
  • Y. Guo, F. Wang, L. Gong, and S. Shen, “Evolution and heat transfer after droplet impact on heated liquid film with vapor bubbles inside,” Numer. Heat Transf., Part B: Fund., pp. 1, 2019. DOI: 10.1080/10407790.2019.1665419.
  • A. Amirzadeh, and S. Chandra, “Small droplet formation in a pneumatic drop-on-demand generator: experiments and analysis,” Exp. Therm. Fluid Sci., vol. 34, no. 8, pp. 1488–1497, 2010. DOI: 10.1016/j.expthermflusci.2010.07.013.
  • S. A. Banitabaei, and A. Amirfazli, “Pneumatic drop generator: liquid pinch-off and velocity of single droplets,” Colloids Surf. A: Physicochem. Eng. Aspects, vol. 505, pp. 204–213, 2016. DOI: 10.1016/j.colsurfa.2016.05.061.
  • Ansys, Inc. Ansys Fluent Theory Guide, Southpointe: Ansys, Inc., 2015.
  • S. Das et al., “Oscillation characteristics of low weber number impinging micro-droplets,” Theoretic. Computat. Fluid Dyn., vol. 33, no. 2, pp. 1–17, 2019. DOI: 10.1007/s00162-019-00489-9.
  • J. Brackbill, D. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” Comput. Phys., vol. 100, no. 2, pp. 335–354, , 1992. DOI: 10.1016/0021-9991(92)90240-Y.
  • U. Olgac, D. Izbassarov, and M. Muradoglu, “Direct numerical simulation of an oscillating droplet in partial contact with a substrate,” Comput. Fluids, vol. 77, pp. 152–158, 2013. DOI: 10.1016/j.compfluid.2013.03.007.
  • Engineering ToolBox, “Engineering ToolBox,” 2001. [Online]. Available: https://www.engineeringtoolbox.com. Accessed Sept. 2018.
  • R. H. Perry, and D. W. Green, Perry's Chemical Engineers' Handbook. New York: McGraw-Hill, 2008.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamental of Heat and Mass Transfer. New York: John Wiley & Sons, 2011.
  • M. Pasandideh‐Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, vol. 8, no. 3, pp. 650–659, 1996. DOI: 10.1063/1.868850.
  • S. Herbert, S. Fischer, T. Gambaryan-Roisman, and P. Stephan, “Local heat transfer and phase change phenomena during single drop impingement on a hot surface,” Int. J. Heat Mass Transf., vol. 61, pp. 605–614, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.01.081.
  • R. H. Temperton, and J. S. Sharp, “Vibrational modes of elongated sessile liquid droplets,” Langmuir, vol. 29, no. 15, pp. 4737–4742, 2013. DOI: 10.1021/la304520c.
  • X. Noblin, A. Buguin, and F. Brochard-Wyart, “Vibrations of sessile drops,” Eur. Phys. J. Special Top., vol. 166, no. 1, pp. 7–10, 2009. DOI: 10.1140/epjst/e2009-00869-y.
  • X. Li, X. Ma, and Z. Lan, “Behavioral patterns of drop impingement onto rigid substrates with a wide range of wettability and different surface temperatures,” AIChE J., vol. 55, no. 8, pp. 1983–1992, 2009. DOI: 10.1002/aic.11849.
  • M. Strani, and F. Sabetta, “Free vibrations of a drop in partial contact with a solid support,” J. Fluid Mech., vol. 141, pp. 223–247, 1984.
  • P. G. Pittoni, H.-K. Tsao, and S.-Y. Lin, “Water drop impingement on graphite substrates with random dilute defects,” Exp. Therm. Fluid Sci., vol. 53, pp. 142–146, 2014. DOI: 10.1016/j.expthermflusci.2013.11.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.