Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 3
327
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Natural convection in a square cavity filled with an anisotropic porous medium due to sinusoidal heat flux on horizontal walls

, ORCID Icon &
Pages 317-341 | Received 17 Jul 2019, Accepted 04 Nov 2019, Published online: 14 Nov 2019

References

  • C. J. Hsu, “Heat transfer in a round tube with sinusoidal wall heat flux distribution,” AIChE. J., vol. 11, no. 4, pp. 690–695, 1965. DOI: 10.1002/aic.690110423.
  • M. Musto, N. Bianco, G. Rotondo, F. Toscano, and G. Pezzella, “A simplified methodology to simulate a heat exchanger in an aircrafts oil cooler by means of a porous media model,” Appl. Therm. Eng., vol. 94, pp. 836–845, 2016. DOI: 10.1016/j.applthermaleng.2015.10.147.
  • Z. G. Xu and C. Y. Zhao, “Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions,” Appl. Therm. Eng, vol. 100, pp. 68–77, 2016. DOI: 10.1016/j.applthermaleng.2016.02.016.
  • R. Ghasemizadeh, X. Yu, C. Butscher, F. Hellweger, I. Padilla, and A. Alshawabkeh, “Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers,” PLoS One, vol. 10, no. 9, pp. e0138954, 2015. DOI: 10.1371/journal.pone.0138954.
  • J. Fu, Y. Tang, J. Li, Y. Ma, W. Chen, and H. Li, “Four kinds of the two-equation turbulence model′ s research on flow field simulation performance of DPF′ s porous media and swirl-type regeneration burner,” Appl. Therm. Eng., vol. 93, pp. 397–404, 2016. DOI: 10.1016/j.applthermaleng.2015.09.116.
  • M. Cascetta, G. Cau, P. Puddu, and F. Serra, “A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system,” Appl. Therm. Eng, vol. 98, pp. 1263–1272, 2016. DOI: 10.1016/j.applthermaleng.2016.01.019.
  • J. H. Stang, and J. E. Bush, “The periodic method for testing compact heat exchanger surfaces,” J. Engrs. Power, vol. 96, no. 2, pp. 87–94, 1974. DOI: 10.1115/1.3445767.
  • M. Mishra, P. K. Das, and S. Sarangi, “Transient behavior of crossflow heat exchangers due to sinusoidal excitation,” J. Heat Transf., vol. 132, no. 9, pp. 091801–091801, 2010.
  • H. T. Cheong, S. Sivasankaran, and M. Bhuvaneswari, “Natural convection in a wavy porous cavity with sinusoidal heating and internal heat generation,” Int. J. Numer. Methods Heat Fluid Flow, vol. 27, no. 2, pp. 287–309, 2017. DOI: 10.1108/HFF-07-2015-0272.
  • A. Barletta, and E. Zanchini, “Laminar forced convection with sinusoidal wall heat flux distribution: Axially periodic regime,” Heat Mass Transf., vol. 31, no. 1/2, pp. 41–48, 1995. DOI: 10.1007/BF02537420.
  • A. Barletta, and E. Rossi di Schio, “Effects of viscous dissipation on laminar forced convection with axially periodic wall heat flux,” Heat Mass Transf., vol. 35, no. 1, pp. 9–16, 1999. DOI: 10.1007/s002310050292.
  • K. Zniber, A. Oubarra, and J. Lahjomri, “Analytical solution to the problem of heat transfer in an MHD flow inside a channel with prescribed sinusoidal wall heat flux,” Energy Conversion manage., vol. 46, no. 7/8, pp. 1147–1163, 2005. DOI: 10.1016/j.enconman.2004.06.023.
  • I. E. Sarris, I. Lekakis, and N. S. Vlachos, “Natural convection in a 2D enclosure with sinusoidal upper wall temperature,” Numer. Heat Transf A, vol. 42, no. 5, pp. 513–530, 2002. DOI: 10.1080/10407780290059675.
  • E. Bilgen, and R. B. Yedder, “Natural convection in enclosure with heating and cooling by sinusoidal temperature profiles on one side,” Int. J. Heat Mass Transf., vol. 50, no. 1-2, pp. 139–150, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.027.
  • A. Dalal, and M. K. Das, “Numerical study of laminar natural convection in a complicated cavity heated from top with sinusoidal temperature and cooled from other sides,” Comput. Fluids, vol. 36, no. 4, pp. 680–700, 2007. DOI: 10.1016/j.compfluid.2006.05.005.
  • Q. H. Deng, and J. J. Chang, “Natural convection in a rectangular enclosure with sinusoidal temperature distributions on both side walls,” Numer. Heat Transf. A, vol. 54, no. 5, pp. 507–524, 2008. DOI: 10.1080/01457630802186080.
  • H. T. Cheong, Z. Siri, and S. Sivasankaran, “Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition,” Int. Comm. Heat Mass Transf., vol. 45, pp. 75–85, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.04.017.
  • S. Sivasankaran, and K. L. Pan, “Natural convection of nanofluids in a cavity with nonuniform temperature distributions on side walls,” Numer. Heat Transf., A, vol. 6, no. 3, pp. 247–268, 2014. DOI: 10.1080/10407782.2013.825510.
  • I. Mejri, A. Mahmoudi, M. A. Abbassi, and A. Omri, “Magnetic field effect on entropy generation in a nano fluid-filled enclosure with sinusoidal heating on both side walls,” Powder Technol., vol. 266, pp. 340–353, 2014. DOI: 10.1016/j.powtec.2014.06.054.
  • M. Sheikholeslami, and A. J. Chamkha, “Electrohydrodynamic free convection heat transfer of a nanofluid in a semi-annulus enclosure with a sinusoidal wall,” Numer. Heat Transfer, Part A, vol. 69, no. 7, pp. 781–793, 2016. DOI: 10.1080/10407782.2015.1090819.
  • A. I. Alsabery, A. J. Chamkha, H. Saleh, and I. Hashim, “Heat line visualization of conjugate natural convection in a square cavity filled with nanofluid with sinusoidal temperature variations on both horizontal walls,” Int. J. Heat Mass Transf., vol. 100, pp. 835–850, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.031.
  • W. He, G. Qin, Y. Wang, and Z. Bao, “A segregated spectral element method for thermo-magnetic convection of paramagnetic fluid in rectangular enclosures with sinusoidal temperature distribution on one side wall,” Numer. Heat Transfer Part A, vol. 76, no. 2, pp. 51–72, 2019. DOI: 10.1080/10407782.2019.1615787.
  • N. H. Saeid, “Natural convection in porous cavity with sinusoidal bottom wall temperature variation,” Int. Comm. Heat Mass Transf., vol. 32, no. 3-4, pp. 454–463, 2005. DOI: 10.1016/j.icheatmasstransfer.2004.02.018.
  • T. Basak, S. Roy, T. Paul, and I. Pop, “Natural convection in a square cavity filled with a porous medium: Effects of various thermal boundary conditions,” Int. J. Heat Mass Transf., vol. 49, no. 7-8, pp. 1430–1441, 2006. DOI: 10.1016/j.ijheatmasstransfer.2005.09.018.
  • Y. Varol, H. F. Oztop, and I. Pop, “Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall,” Int. Comm. Heat Mass Transf., vol. 35, no. 1, pp. 56–64, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.05.015.
  • M. Bhuvaneswari, S. Sivasankaran, and Y. J. Kim, “Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls,” Numer. Heat Transf. A, vol. 59, no. 3, pp. 167–184, 2011. DOI: 10.1080/10407782.2011.541219.
  • S. Sivasankaran, and M. Bhuvaneswari, “Natural convection in a porous cavity with sinusoidal heating on both sidewalls,” Numer. Heat Transf. A, vol. 63, no. 1, pp. 14–30, 2013. DOI: 10.1080/10407782.2012.715985.
  • F. Wu, G. Wang, and W. Zhou, “Buoyancy induced convection in a porous cavity with sinusoidally and partially thermally active sidewalls under local thermal non-equilibrium condition,” Int. Comm. Heat Mass Transf., vol. 75, pp. 100–114, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.03.026.
  • F. Wu, D. Lu, and G. Wang, “Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal non-equilibrium model,” Numer. Heat Transf. A, vol. 69, no. 11, pp. 1280–1296, 2016. DOI: 10.1080/10407782.2015.1127025.
  • F. Wu, G. Wang, and W. Zhou, “Aspect ratio effect on natural convection in a square enclosure with a sinusoidal active thermal wall using a thermal non-equilibrium model,” Numer. Heat Transf. A, vol. 70, no. 3, pp. 310–329, 2016. DOI: 10.1080/10407782.2016.1173474.
  • A. I. Alsabery, A. J. Chamkha, I. Hashim, and P. G. Siddheshwar, “Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model,” J. Heat Transf., vol. 139, no. 12, pp. 122008–122001, 2017.
  • A. I. Alsabery, A. J. Chamkha, H. Saleh, I. Hashim, and B. Chanane, “Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity,” Phys. A, vol. 470, pp. 20–38, 2017. DOI: 10.1016/j.physa.2016.11.107.
  • D. S. Cimpean, C. Revnic, and I. Pop, “Natural convection in a square inclined cavity filled with a porous medium with sinusoidal temperature distribution on both side walls,” Transp. Porous Media, vol. 129, no. 389, pp. 1–14, 2019.
  • A. Kumar, and P. Bera, “Natural convection in an anisotropic porous enclosure due to nonuniform heating from the bottom wall,” J. Heat Transf., vol. 131, no. 7, pp. 072601–072601, 2009.
  • M. K. Khandelwal, P. Bera, and A. Chakrabati, “Influence of periodicity of sinusoidal bottom boundary condition on the natural convection in porous enclosure,” Int. J. Heat Mass Transf., vol. 55, no. 11/12, pp. 2889–2900, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.02.028.
  • R. A. Wooding, “Large scale geothermal field parameters and convection theory” Second workshop geothermal reservoir engineering, Stanford University, Stanford, December 1–3, 1976, pp. 339–345.
  • P. A. Tyvand, and L. Storsletten, “Onset of convection in an anisotropic porous medium with oblique principal axes,” J. Fluid Mech., vol. 226, no. 1, pp. 371–382, 1991. DOI: 10.1017/S0022112091002422.
  • L. Storesletten, “Natural convection in a horizontal porous layer with anisotropic thermal diffusivity,” Transp. Porous Media, vol. 12, no. 1, pp. 19–29, 1993. DOI: 10.1007/BF00616359.
  • P. Bera, S. Pippal, and A. K. Sharma, “A thermal non-equilibrium approach on double-diffusive natural convection in a square porous-medium cavity,” Int. J. Heat Mass Transf., vol. 78, pp. 1080–1094, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.041.
  • F. Wu, G. Wang, and W. Zhou, “A thermal nonequilibrium approach to natural convection in a square enclosure due to the partially cooled sidewalls of the enclosure,” Numer. Heat Transf., A, vol. 67, no. 7, pp. 771–790, 2015. DOI: 10.1080/10407782.2014.949189.
  • F. Wu, W. Zhou, G. Wang, X. Ma, and Y. Wang, “Numerical simulation of natural convection in a porous cavity with linearly temperature distributions under the local thermal nonequilibrium condition,” Numer. Heat Transf., A, vol. 68, no. 12, pp. 1394–1415, 2015. DOI: 10.1080/10407782.2015.1052316.
  • J. P. Holman, Heat Transfer. New Delhi, India: Mc Graw-Hill, 2010.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New Delhi, India: Hemisphere Publishing Corporation, 1980.
  • G. Degan, and P. Vasseur, “Natural convection in a vertical slot filled with an anisotropic porous medium with oblique principal axes,” Numer. Heat Transf. A, vol. 30, no. 4, pp. 397–412, 1996. DOI: 10.1080/10407789608913847.
  • P. Bera, V. Eswaran, and P. Singh, “Numerical study of heat and mass transfer in an anisotropic porous enclosure due to constant heating and cooling,” Numer. Heat Transf. A, vol. 34, no. 8, pp. 887–905, 1998. DOI: 10.1080/10407789808914021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.