Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 4
229
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Mixed convection and heat flow characteristics in a lid-driven enclosure with porous fins: Full numerical modeling and parametric investigations

, , , & ORCID Icon
Pages 361-390 | Received 14 Jul 2019, Accepted 04 Nov 2019, Published online: 26 Nov 2019

References

  • D. S. Kumar, A. K. Dass, and A. Dewan, “Analysis of non-Darcy models for mixed convection in a porous cavity using a multigrid approach,” Numer. Heat Transfer A, vol. 56, no. 8, pp. 685–708, 2009. DOI: 10.1080/10407780903424674.
  • M. M. Rahman, H. F. Oztop, N. A. Rahim, R. Saidur, and K. A. Salem, “MHD mixed convection with joule heating effect in lid-driven cavity with a heated semi-circular source using the finite element technique,” Numer. Heat Transfer A, vol. 60, no. 6, pp. 543–560, 2011. DOI: 10.1080/10407782.2011.609087.
  • S. Sivasankaran, and K. L. Pan, “Numerical simulation on mixed convection in a porous lid-driven cavity with nonuniform heating on both side walls,” Numer. Heat Transfer A, vol. 61, no. 2, pp. 101–121, 2012. DOI: 10.1080/10407782.2011.643741.
  • S. Sivasankaran, H. T. Cheong, M. Bhuvaneswari, and P. Ganesan, “Effect of moving wall direction on mixed convection in an inclined lid-driven cavity with sinusoidal heating,” Numer. Heat Transfer A, vol. 69, no. 6, pp. 630–642, 2016. DOI: 10.1080/10407782.2015.1069669.
  • R. Iwatsu, J. M. Hyun, and K. Kuwahara, “Mixed convection in a driven cavity with a stable vertical temperature gradient,” Int. J. Heat Mass Transfer, vol. 36, no. 6, pp. 1601–1608, 1993. DOI: 10.1016/S0017-9310(05)80069-9.
  • O. Aydin and W. J. Yang, “Mixed convection in cavities with a locally heated lower wall and moving sidewalls,” Numer. Heat Transfer A, vol. 37, pp. 695–710, 2000. DOI: 10.1080/104077800274037.
  • R. Nasrin, “Influences of physical parameters on mixed convection in a horizontal lid-driven cavity with an undulating base surface,” Numer. Heat Transfer A, vol. 61, no. 4, pp. 306–321, 2012. DOI: 10.1080/10407782.2012.647987.
  • S. Sivasankaran, V. Sivakumar, and A. K. Hussein, “Numerical study on mixed convection in an inclined lid-driven cavity with discrete heating,” Int. Commun. Heat Mass Trans., vol. 46, pp. 112–125, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.05.022.
  • B. Ghasemi and S. M. Aminossadati, “Comparison of mixed convection in a square cavity with an oscillating versus a constant wall,” Numer. Heat Transfer A, vol. 54, no. 7, pp. 726–743, 2008. DOI: 10.1080/10407780802338959.
  • H. Lamarti, M. Mahdaoui, R. Bennacer, and A. Chahboun, “Numerical simulation of mixed convection heat transfer of fluid in a cavity driven by an oscillating using lattice Boltzmann method,” Int. J. Heat Mass Transfer, vol. 137, pp. 615–629, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.057.
  • M. A. Ismael and A. J. Chamkha, “Mixed convection in lid-driven trapezoidal cavities with an aiding or opposing side wall,” Numer. Heat Transfer A, vol. 68, no. 3, pp. 312–335, 2015. DOI: 10.1080/10407782.2014.986001.
  • M. B. Uddin, M. M. Rahman, and M. A. H. Khan, “Hydromagnetic double-diffusive unsteady mixed convection in a trapezoidal enclosure due to uniform and nonuniform heating at the bottom side,” Numer. Heat Transfer A, vol. 68, pp. 205–224, 2015. DOI: 10.1080/10407782.2014.977129.
  • A. Ababaei, M. Abbaszadeh, A. Arefmanesh, and A. J. Chamkha, “Numerical simulation of double-diffusive mixed convection and entropy generation in a lid-driven trapezoidal enclosure with a heat source,” Numer. Heat Transfer A, vol. 73, no. 10, pp. 702–720, 2018. DOI: 10.1080/10407782.2018.1459139.
  • M. B. Uddin, M. M. Rahman, M. A. H. Khan, and T. A. Ibrahim, “Effect of buoyancy ratio on unsteady thermosolutal combined convection in a lid driven trapezoidal enclosure in the presence of magnetic field,” Comput. Fluids, vol. 114, pp. 284–296, 2015. DOI: 10.1016/j.compfluid.2015.03.017.
  • M. Bhuvaneswari, S. Sivasankharan, and Y. J. Kim, “Numerical study on double diffusive mixed convection with a Soret effect in a two-sided lid-driven cavity,” Numer. Heat Transfer A, vol. 59, no. 7, pp. 543–560, 2011. DOI: 10.1080/10407782.2011.561077.
  • D. S. Kumar, K. Murugesan, and H. R. Thomas, “Numerical simulation of double diffusive mixed convection in a lid-driven square cavity using velocity-vorticity formulation,” Numer. Heat Transfer A, vol. 54, pp. 837–865, 2008. DOI: 10.1080/10407780802424213.
  • C. L. Chen and Y. C. Chung, “Numerical study on mixed convection heat transfer in inclined triangular cavities,” Numer. Heat Transfer A, vol. 67, no. 6, pp. 651–672, 2015. DOI: 10.1080/10407782.2014.949135.
  • S. Hussain, K. Mehmood, and M. Sagheer, “MHD mixed convection and entropy generation of water-alumina nanofluid flow in a double lid driven cavity with discrete heating,” J. Magn. Magn. Mater., vol. 419, pp. 140–155, 2016. DOI: 10.1016/j.jmmm.2016.06.006.
  • F. Selimefendiagil and H. F. Oztop, “Modeling and optimization of MHD mixed convection in a lid-driven trapezoidal cavity filled with alumina-water nanofluid: Effects of electrical conductivity models,” Int. J. Mech. Sci., vol. 136, pp. 264–278, 2018. DOI: 10.1016/j.ijmecsci.2017.12.035.
  • S. E. Ahmed, M. A. Mansour, and A. Mahdy, “MHD mixed convection in an inclined lid-driven cavity with opposing thermal buoyancy force: Effect of non-uniform heating on both side walls,” Nucl. Eng. Des., vol. 265, pp. 938–948, 2013. DOI: 10.1016/j.nucengdes.2013.06.023.
  • S. Ray and D. Chatterjee, “MHD mixed convection in a lid-driven cavity including heat conducting solid object and corner heaters with joule heating,” Numer. Heat Transfer A, vol. 66, no. 5, pp. 530–550, 2014. DOI: 10.1080/10407782.2014.892399.
  • K. M. Gangawane, “Computational analysis of mixed convection heat transfer characteristics in lid-driven cavity containing triangular block with constant heat flux: Effect of Prandtl and Grashof numbers,” Int. J. Heat Mass Transfer, vol. 105, pp. 34–57, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.061.
  • A. I. Alsabery, M. A. Sheremet, A. J. Chamkha, and I. Hashim, “Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder,” Int. J. Mech. Sci., vol. 150, pp. 637–655, 2019. DOI: 10.1016/j.ijmecsci.2018.10.069.
  • A. I. Alsabery, M. A. Ismael, A. J. Chamkha, and I. Hashim, “Mixed convection of Al2O3 nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two phase model,” Int. J. Heat Mass Transfer, vol. 119, pp. 939–961, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.136.
  • B. Karbasifar, M. Akbari, and D. Toghraie, “Mixed convection of water-aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder,” Int. J. Heat Mass Transfer, vol. 116, pp. 1237–1249, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.110.
  • N. Biswas, N. K. Manna, and P. S. Mahapatra, “Enhanced thermal energy transport using adiabatic block inside lid-driven cavity,” Int. J. Heat Mass Transfer, vol. 100, pp. 407–427, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.074.
  • S. Mirzakhanlari, K. M. Shirvan, M. Mamourian, and A. J. Chamkha, “Increment of mixed convection heat transfer and decrement of drag coefficient in a lid-driven nanofluid-filled cavity with a conductive rotating circular cylinder at different horizontal locations: A sensitivity analysis,” Powder Tech., vol. 305, pp. 495–508, 2017. DOI: 10.1016/j.powtec.2016.10.029.
  • F. Selimefendigil, H. F. Oztop, and A. J. Chamkha, “Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder,” Int. J. Heat Mass Transfer, vol. 87, pp. 40–51, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.06.015.
  • F. Selimefendigil and H. F. Oztop, “Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder,” Int. J. Heat Mass Transfer, vol. 78, pp. 741–754, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.031.
  • Y. C. Wang, J. Yang, Y. Pan, X. J. Zhang, and Y. F. Yu, “Turbulent natural convection heat transfer with thermal radiation in a rectangular enclosure partially filled with porous medium,” Numer. Heat Transfer A, vol. 70, no. 6, pp. 639–649, 2016. DOI: 10.1080/10407782.2016.1193346.
  • F. Wu, D. L. Lu, and G. Wang, “Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal nonequilibrium model,” Numer. Heat Transfer A, vol. 69, no. 11, pp. 1280–1296, 2016. DOI: 10.1080/10407782.2015.1127025.
  • P. Meshram, S. Bhardwaj, A. Dalal, and S. Pati, “Effects of the inclination angle on natural convection heat transfer and entropy generation in a square porous enclosure,” Numer. Heat Transfer A, vol. 70, no. 11, pp. 1271–1296, 2016. DOI: 10.1080/10407782.2016.1230433.
  • P. Biswal and T. Basak, “Investigation of natural convection via heatlines for Rayleigh–Bénard heating in porous enclosures with a curved top and bottom walls,” Numer. Heat Transfer A, vol. 72, no. 4, pp. 291–312, 2017. DOI: 10.1080/10407782.2017.1358986.
  • G. C. Pal, N. Goswami, and S. Pati, “Numerical investigation of unsteady natural convection heat transfer and entropy generation from a pair of cylinders in a porous enclosure,” Numer. Heat Transfer A, vol. 74, no. 6, pp. 1323–1341, 2018. DOI: 10.1080/10407782.2018.1507887.
  • S. Adjal, S. A. Benouaguef, and B. Zeghmati, “Natural convection in a partially porous cavity: Roads to chaos,” Numer. Heat Transfer A, vol. 74, no. 8, pp. 1443–1467, 2018. DOI: 10.1080/10407782.2018.1525158.
  • D. Chiappini, A. Festuccia, and G. Bella, “Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media,” Numer. Heat Transfer A, vol. 73, no. 5, pp. 291–306, 2018. DOI: 10.1080/10407782.2018.1444868.
  • S. Dutta, A. K. Biswas, and S. Pati, “Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall,” Numer. Heat Transfer A, vol. 73, no. 4, pp. 222–240, 2018. DOI: 10.1080/10407782.2018.1423773.
  • M. S. Astanina, M. A. Sheremet, and J. C. Umavathi, “Transient natural convection with temperature-dependent viscosity in a square partially porous cavity having a heat-generating source,” Numer. Heat Transfer A, vol. 73, no. 12, pp. 849–862, 2018. DOI: 10.1080/10407782.2018.1462007.
  • Y. Z. Wang and G. L. Qin, “Accurate numerical simulation for non-Darcy double-diffusive mixed convection in a double lid-driven porous cavity using SEM,” Numer. Heat Transfer A, vol. 75, no. 9, pp. 598–615, 2019. DOI: 10.1080/10407782.2019.1608764.
  • K. M. Khanafer and A. J. Chamhka, “Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium,” Int. J. Heat Mass Transfer, vol. 42, no. 13, pp. 2465–2481, 1999. DOI: 10.1016/S0017-9310(98)00227-0.
  • K. Khanafer and K. Vafai, “Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid saturated porous medium,” Numer. Heat Transfer A, vol. 42, no. 5, pp. 465–486, 2002. DOI: 10.1080/10407780290059657.
  • E. Vishnuvardhanarao and M. K. Das, “Laminar mixed convection in a parallel two sided lid-driven differentially heated square cavity filled with a fluid-saturated porous medium,” Numer. Heat Transfer A, vol. 53, no. 1, pp. 88–110, 2007. DOI: 10.1080/10407780701454006.
  • M. Roy, T. Basak, and S. Roy, “Analysis of entropy generation during mixed convection in porous square cavities: Effects of thermal boundary conditions,” Numer. Heat Transfer A, vol. 68, no. 9, pp. 925–957, 2015. DOI: 10.1080/10407782.2015.1023134.
  • M. Roy, S. Roy, and T. Basak, “Analysis of entropy generation for mixed convection within porous square cavities: Effects of various moving walls,” Numer. Heat Transfer A, vol. 70, no. 7, pp. 738–762, 2016. DOI: 10.1080/10407782.2016.1193354.
  • H. F. Oztop, “Combined convection heat transfer in a porous lid-driven enclosure due to heater with finite length,” Int. Commun. Heat Mass Trans., vol. 33, no. 6, pp. 772–779, 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.003.
  • A. M. Al-Amiri, “Analysis of momentum and energy transfer in a lid-driven cavity filled with a porous medium,” Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3513–3527, 2000. DOI: 10.1016/S0017-9310(99)00391-9.
  • N. Biswas and N. K. Manna, “Enhanced convection heat transfer in lid-driven porous cavity with aspiration,” Int. J. Heat Mass Transfer, vol. 114, pp. 430–452, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.06.078.
  • S. Sivasankaran, M. A. Mansour, A. M. Bashad, and M. Bhuvaneswari, “MHD mixed convection of Cu-water nanofluid in a two-sided lid-driven porous cavity with a partial slip,” Numer. Heat Transfer A, vol. 70, no. 12, pp. 1356–1370, 2016. DOI: 10.1080/10407782.2016.1243957.
  • B. Pekmen and M. T. Sezgin, “MHD flow and heat transfer in a lid-driven porous enclosure,” Comput. Fluids, vol. 89, pp. 191–199, 2014. DOI: 10.1016/j.compfluid.2013.10.045.
  • M. Sheikholeslami, S. A. Shehza, F. M. Abbasi, and Z. X. Li, “Nanofluid flow and forced convection heat transfer due to Lorentz forces in a porous lid driven cubic enclosure with hot obstacle,” Comput. Methods Appl. Mech. Engrg., vol. 338, pp. 491–505, 2018. DOI: 10.1016/j.cma.2018.04.020.
  • M. Rajarathinam, N. Nithyadevi, and A. J. Chamkha, “Heat transfer enhancement of mixed convection in an inclined porous cavity using Cu-water nanofluid,” Adv. Powder Technol., vol. 29, no. 3, pp. 590–605, 2018. DOI: 10.1016/j.apt.2017.11.032.
  • X. D. Shi and J. M. Khodadadi, “Laminar fluid flow and heat transfer in a lid-driven cavity due to a thin fin,” J. Heat Transfer, vol. 124, no. 6, pp. 1056–1063, 2002. DOI: 10.1115/1.1517272.
  • X. D. Shi and J. M. Khodadadi, “Fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin: Transient behavior,” J. Heat Transfer, vol. 126, no. 6, pp. 924–930, 2004. DOI: 10.1115/1.1833362.
  • X. D. Shi and J. M. Khodadadi, “Periodic state of fluid flow and heat transfer in a lid-driven cavity due to an oscillating thin fin,” Int. J. Heat Mass Transfer, vol. 48, no. 25–26, pp. 5323–5337, 2005. DOI: 10.1016/j.ijheatmasstransfer.2005.07.026.
  • C. Z. Sun, B. Yu, H. F. Oztop, Y. Wang, and J. J. Wei, “Control of mixed convection in lid-driven enclosures using conductive triangular fins,” Int. J. Heat Mass Transfer, vol. 54, no. 4, pp. 894–909, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.068.
  • A. L. Razera, R. J. C. Fonseca, L. A. Isoldi, E. D. Santos, L. A. O. Rocha, and C. Biserni, “Constructal design of a semi-elliptical fin inserted in a lid-driven square cavity with mixed convection,” Int. J. Heat Mass Transfer, vol. 126, pp. 81–94, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.157.
  • A. A. R. Darzi, M. Farhadi, and A. M. Lavasani, “Two phase mixture model of nano-enhanced mixed convection heat transfer in finned enclosure,” Chem. Eng. Res. Des., vol. 3, pp. 294–304, 2016. DOI: 10.1016/j.cherd.2016.05.019.
  • S. K. Mahapatra, A. Sarkar, and A. Sarkar, “Numerical simulation of opposing mixed convection in differentially heated square enclosure with partition,” Int. J. Therm. Sci., vol. 46, no. 10, pp. 970–979, 2007. DOI: 10.1016/j.ijthermalsci.2006.11.017.
  • K. Vafai. Handbook of Porous Media, 2nd ed. New York: Taylor and Francis Group, 2005.
  • D. A. Nield and A. Bejan. Convection in Porous Media, 4th ed. New York: Springer Science + Business Media, 2013.
  • K. Khanafer, A. AlAmiri, and J. Bull, “Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall,” Int. J. Heat Mass Transfer, vol. 87, pp. 59–70, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.077.
  • B. Alshuraiaan and K. Khanafer, “The effect of the position of the heated thin porous fin on the laminar natural convection heat transfer in a differentially heated cavity,” Int. Commun. Heat Mass Trans., vol. 78, pp. 190–199, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.09.014.
  • M. Siavashi, R. Yousofvand, and S. Rezanijad, “Nanofluid and porous fins effects on natural convection and entropy generation of flow inside a cavity,” Adv. Power Technol., vol. 29, no. 1, pp. 142–156, 2018. DOI: 10.1016/j.apt.2017.10.021.
  • W. Al-Kouz, A. Alshare, S. Kiwan, A. Al-Muhtady, A. Alkhalidi, and H. Saadeh, “Two-dimensional analysis of low-pressure flows in an inclined square cavity with two fins attached to the hot wall,” Int. J. Therm. Sci., vol. 126, pp. 181–193, 2018. DOI: 10.1016/j.ijthermalsci.2018.01.005.
  • S. Kimura and A. Bejan, “The ''Heatline” visualization of convective heat transfer,” J. Heat Transfer, vol. 105, no. 4, pp. 916–919, 1983. DOI: 10.1115/1.3245684.
  • F. Y. Zhao, D. Liu, and G. F. Tang, “Conjugate heat transfer in square enclosures,” Heat Mass Transfer, vol. 43, no. 9, pp. 907–922, 2007. DOI: 10.1007/s00231-006-0136-4.
  • F. Y. Zhao, D. Liu, and G. F. Tang, “Application issues of the streamline, heatline, and massline for conjugate heat and mass transfer,” Int. J. Heat Mass Transfer, vol. 50, no. 1–2, pp. 320–334, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.026.
  • D. Liu, F. Y. Zhao, and G. F. Tang, “Conjugate heat transfer in an enclosure with a centered conducting body imposed sinusoidal temperature profiles on one side,” Numer. Heat Transfer A, vol. 53, no. 2, pp. 204–223, 2007. DOI: 10.1080/10407780701454030.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. Washington DC: Hemisphere, 1980.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.