Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 4
227
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Nanofluid double diffusive natural convection in a porous cavity under multiple force fields

, & ORCID Icon
Pages 343-360 | Received 22 Aug 2019, Accepted 07 Nov 2019, Published online: 26 Nov 2019

References

  • Z. Yangsheng, Rock Fluid Mechanics in Mine. Beijing: China Coal Industry Publishing House, 1994.
  • S. Rashidi, J. A. Esfahani, N. Karimi. “Porous materials in building energy technologies - A review of the applications, modelling and experiments,” Renew. Sustain. Energ. Rev., vol. 91, pp. 229–247, 2018. DOI: 10.1016/j.rser.2018.03.092.
  • F. Beghein. “Numerical study of double-diffusive natural convection in a square cavity,” Int. J. Heat Mass Transf., vol. 35, no. 4, pp. 833–846, 1991.
  • M. Nazari, L. Louhghalam, and M. H. Kayhani, “Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle,” Chin. J. Chem. Eng., vol. 23, no. 1, pp. 22–30, 2015. DOI: 10.1016/j.cjche.2014.10.008.
  • F.-H. Lai, and Y.-T. Yang, “Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure,” Int. J. Therm. Sci., vol. 50, no. 10, pp. 1930–1941, 2011. DOI: 10.1016/j.ijthermalsci.2011.04.015.
  • C. Qi, “Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method,” Nanoscale Res. Lett., vol. 56, no. 8, pp. 1–16, 2013. DOI: 10.1186/1556-276X-8-56.
  • G. R. Kefayati, “FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid,” Powder Technol., vol. 273, pp. 176–190, 2015. DOI: 10.1016/j.powtec.2014.12.042.
  • S. Acharya, and S. K. Dash, “Natural convection in a cavity with undulated walls filled with water-based non-Newtonian power-law CuO-water nanofluid under the influence of the external magnetic field,” Numer. Heat Transf., Part A: Appl., vol. 76, no. 7, pp. 552–575, 2019. DOI: 10.1080/10407782.2019.1644898.
  • P. Mayeli, H. Hesami et al., “Al2O3-Water nanofluid heat transfer and entropy generation in a ribbed channel with wavy wall in the presence of magnetic field,” Numer. Heat Transf., Part A: Appl., vol. 73, no. 9, pp. 604–623, 2018. DOI: 10.1080/10407782.2018.1461494.
  • M. Sheikholeslami, M. Gorji-Bandpay, and D. D. Ganji, “Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid,” Int. Commun. Heat Mass Transf., vol. 39, no. 7, pp. 978–986, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.020.
  • G. R. Kefayati, “Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution,” Powder Technol., vol. 243, pp. 171–183, 2013. DOI: 10.1016/j.powtec.2013.03.047.
  • G. R. Kefayati, “Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure,” Int. J. Heat Mass Transf., vol. 92, pp. 1066–1089, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.09.078.
  • A. J. Chamkha, and H. Al-Naser, “Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients,” Int. J. Therm. Sci., vol. 41, no. 10, pp. 936–948, 2002. DOI: 10.1016/S1290-0729(02)01386-8.
  • A. J. Chamkha, and H. Al-Naser, “Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients,” Int. J. Heat Mass Transf., vol. 45, no. 12, pp. 2465–2483, 2002. DOI: 10.1016/S0017-9310(01)00344-1.
  • Mohamed. “Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source,” Int. J. Therm. Sci., vol. 47, pp. 237–248, 2008.
  • Mohamed. “Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source, part A: Effect of Rayleigh number and inclination angle,” Alexandria Eng. J., vol. 50, pp. 269–282, 2011.
  • P. X. Yu, Z. Xiao, S. Wu, Z. F. Tian, and X. Cheng, “High accuracy numerical investigation of double-diffusive convection in a rectangular cavity under a uniform horizontal magnetic field and heat source,” Int. J. Heat Mass Transf., vol. 110, pp. 613–628, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.068.
  • C. Ma, “Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source,” Nonlinear Anal. Real World Appl., vol. 10, no. 5, pp. 2666–2678, 2009. DOI: 10.1016/j.nonrwa.2008.07.006.
  • A. Sathiyamoorthi, and S. Anbalagan, “Mesoscopic analysis of heatline and massline during double-diffusive MHD natural convection in an inclined cavity,” Chin. J. Phys., vol. 56, no. 5, pp. 2155–2172, 2018. DOI: 10.1016/j.cjph.2018.09.006.
  • S. Adjal, S. Aklouche-Benouaguef, and B. Zeghmati, “Natural convection in a partially porous cavity: Roads to chaos,” Numerical Heat Transfer, Part A: Application, vol. 74, no. 8, pp. 1443–1467, 2018. DOI: 10.1080/10407782.2018.1525158.
  • H. T. Xu, T. T. Wang, Z. G. Qu, J. Chen, and B. B. Li, “Lattice Boltzmann simulation of the double diffusive natural convection and oscillation characteristics in an enclosure filled with porous medium,” Int. Commun. Heat Mass Transf., vol. 81, pp. 104–115, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.001.
  • S. Hussain, K. Mehmood, M. Sagheer, and M. Yamin, “Numerical simulation of double diffusive mixed convective nanofluid flow and entropy generation in a square porous enclosure,” Int. J. Heat Mass Transf., vol. 122, pp. 1283–1297, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.082.
  • K. Ghasemi, and M. Siavashi, “MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios,” J. Magn. Magn. Mater., vol. 442, pp. 474–490, 2017. DOI: 10.1016/j.jmmm.2017.07.028.
  • T. R. Vijaybabu, and S. Dhinakaran, “MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3 − H2O nanofluid: An LBM study,” Int. J. Mech. Sci., vol. 153–154, pp. 500–516, 2019. DOI: 10.1016/j.ijmecsci.2019.02.003.
  • Q. Ren, Y.-L. He, K.-Z. Su, and C. L. Chan, “Investigation of the effect of metal foam characteristics on the PCM melting performance in a latent heat thermal energy storage unit by pore-scale lattice Boltzmann modeling,” Numer. Heat Transf., Part A: Appl., vol. 72, no. 10, pp. 745–764, 2017. DOI: 10.1080/10407782.2017.1412224.
  • Z. Guo, and T. S. Zhao, “Lattice Boltzmann model for incompressible flows through porous media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 66, no. 3 Pt 2B, pp. 036304, 2002.
  • Y. Xuan, and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000. DOI: 10.1016/S0017-9310(99)00369-5.
  • E. Abu-Nada, Z. Masoud, and A. Hijazi, “Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids,” Int. Commun. Heat Mass Transf., vol. 35, no. 5, pp. 657–665, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.11.004.
  • S. Soleimani, M. Sheikholeslami, D. D. Ganji, and M. Gorji-Bandpay, “Natural convection heat transfer in a nanofluid filled semi-annulus enclosure,” Int. Commun. Heat Mass Transf., vol. 39, no. 4, pp. 565–575, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.01.016.
  • I. Gherasim, G. Roy, C. T. Nguyen, and D. Vo-Ngoc, “Experimental investigation of nanofluids in confined laminar radial flows,” Int. J. Therm. Sci., vol. 48, no. 8, pp. 1486–1493, 2009. DOI: 10.1016/j.ijthermalsci.2009.01.008.
  • E. Abu-Nada, Z. Masoud, H. F. Oztop, and A. Campo, “Effect of nanofluid variable properties on natural convection in enclosures,” Int. J. Therm. Sci., vol. 49, no. 3, pp. 479–491, 2010. DOI: 10.1016/j.ijthermalsci.2009.09.002.
  • G. Barakos, E. Mitsoulis, and D. Assimacopoulos, “Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions,” Int. J. Numer. Methods Fluids, vol. 18, no. 7, pp. 695–719, 1994. DOI: 10.1002/fld.1650180705.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.