Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 5
430
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Thermal analyses of minichannels and use of mathematical and numerical models

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 497-537 | Received 22 Apr 2019, Accepted 26 Nov 2019, Published online: 03 Jan 2020

References

  • V. Serin, B. Médéric, P. Lavieille, and M. Miscevic, “Heat and mass transfer in capillary-pumped liquid films in square cross-section minichannels,” Heat Transf. Eng., vol. 29, no. 11, pp. 913–923, 2008. DOI: 10.1080/01457630802186007.
  • D. Liu and L. Yu, “Single-phase thermal transport of nanofluids in a minichannel,” J. Heat Transfer, vol. 133, no. 3, pp. 31009–031019, 2011.
  • R. Saidur, K. Y. Leong, and H. A. Mohammad, “A review on applications and challenges of nanofluids,” Renew. Sustain. Energy Rev., vol. 15, no. 3, pp. 1646–1668, 2011. DOI: 10.1016/j.rser.2010.11.035.
  • T. L. Bergman, “Analysis of heat transfer enhancement in minichannel heat sinks with turbulent flow using H2O–Al2O3 nanofluids,” J. Electron. Packag., vol. 131, pp. 1–5, 2009.
  • S. Vafaei and D. Wen, “Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel,” Heat Mass Transfer, vol. 48, no. 2, pp. 349–357, 2012. DOI: 10.1007/s00231-011-0887-4.
  • A. A. Chehade, H. L. Gualous, S. L. Masson, F. Fardoun, and A. Besq, “Boiling local heat transfer enhancement in minichannels using nanofluids,” Nanoscale Res. Lett., vol. 8, no. 1, pp. 130, 2013. DOI: 10.1186/1556-276X-8-130.
  • J. M. Wu and J. Zhao, “A review of nanofluid heat transfer and critical heat flux enhancement - research gap to engineering application,” Prog. Nucl. Energy, vol. 66, pp. 13–24, 2013. DOI: 10.1016/j.pnucene.2013.03.009.
  • M. Yaghoubi, “The effect of temperature dependent electrical conductivity on the MHD natural convection of Al2O3–water nanofluid in a rectangular enclosure,” in Proceedings of the ASME 2014 4thJoint US- European Fluids Engineering Division Summer Meeting and 12th International Conference on NanoChannels, MicroChannels and Minichannels, Chicago, Illinois, 2014, pp. 1–6.
  • A. Turgut and E. Elbasan, “Nanofluids for electronics cooling,” 2014 IEEE 20th Int. Symp. Des. Technol. Electron. Packag., pp. 35–37, 2014.
  • A. H. Saberi and M. Kalteh, “Numerical investigation of nanofluid flow and conjugated heat transfer in a micro-heat-exchanger using the lattice Boltzmann method,” Numer. Heat Transf. Appl., vol. 70, no. 12, pp. 1390–1401, Dec. 2016. DOI: 10.1080/10407782.2016.1244394.
  • Y. Luo, J. Zhang, W. Li, E. Sokolova, Y. Li, and W. J. Minkowycz, “Numerical investigation of the bubble growth in horizontal rectangular microchannels,” Numer. Heat Transf. Appl., vol. 71, no. 12, pp. 1175–1188, Jun. 2017. DOI: 10.1080/10407782.2017.1350538.
  • A. Albojamal, H. Hamzah, A. Haghighi, and K. Vafai, “Analysis of nanofluid transport through a wavy channel,” Numer. Heat Transf. Appl., vol. 72, no. 12, pp. 869–890, 2017. Dec. DOI: 10.1080/10407782.2017.1412679.
  • Q. Yu, Y. Lu, D. Peng, Y. Wu, and C. Ma, “Natural convection heat transfer of molten salt nanofluids around vertical array of heated horizontal cylinders,” Numer. Heat Transf. Appl., vol. 74, no. 10, pp. 1666–1684, Nov. 2018. DOI: 10.1080/10407782.2018.1543919.
  • M. M. Abd El-Samie, M. H. Shedid, and M. A. M. Hassan, “Numerical study of a solar thermoelectric generator with nanofluids based microcooling system,” Numer. Heat Transf. Appl., vol. 74, no. 12, pp. 1804–1826, Dec. 2018. DOI: 10.1080/10407782.2018.1562737.
  • M. A. Hassab, M. K. Mansour, and M. M. M. Sorour, “Thermal investigation of the conjugate heat transfer problem in multi-row circular minichannels,” Numer. Heat Transf. Appl., vol. 71, no. 12, pp. 1205–1222, Jun. 2017. DOI: 10.1080/10407782.2017.1353369.
  • S. Hozejowska, R. Kaniowski, and M. E. Poniewski, “Application of adjustment calculus to the Trefftz method for calculating temperature field of the boiling liquid flowing in a minichannel,” Int. J. Numer. Methods Heat Fluid Flow, vol. 24, no. 4, pp. 811–824, 2014. DOI: 10.1108/HFF-01-2013-0022.
  • O. Mahian, A. Kianifar, S. Zeinali Heris, and S. Wongwises, “First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials,” Int. J. Heat Mass Transf., vol. 78, pp. 1166–1176, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.009.
  • M. Goodarzi et al., “Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids,” Int. Commun. Heat Mass Transf., vol. 66, pp. 172–179, 2015. DOI: 10.1016/j.icheatmasstransfer.2015.05.002.
  • A. Afzal, M. S. Ad, and A. R. Rk, “Experimental Thermal Investigation of CuO-W Nanofluid in Circular Minichannel,” Model. Meas. Control B, vol. 86, no. 2, pp. 335–344, 2017. DOI: 10.18280/mmc_b.860201.
  • A. Afzal, I. Nawfal, I. M. Mahbubul, and S. S. Kumbar, “An overview on the effect of ultrasonication duration on different properties of nanofluids,” J. Therm. Anal. Calorim., vol. 135, no. 1, pp. 393–418, 2019. DOI: 10.1007/s10973-018-7144-8.
  • A. Afzal, A. D. M. Samee, and R. K. A. Razak, “Comparative thermal performance analysis of water, engine coolant oil and MWCNT-W nanofluid in a radiator,” Model. Meas. Control B, vol. 87, no. 1, pp. 1–6, 2018. DOI: 10.18280/mmc_b.870101.
  • A. Afzal, M. Samee A. D, A. Javad, A. Shafvan S, A. P V, and A. Kabeer K. M, “Heat transfer analysis of plain and dimpled tubes with different spacings,” Heat Transf. Res., vol. 47, no. 3, pp. 556–568, 2018. DOI: 10.1002/htj.21318.
  • A. Afzal, A. D. M. Samee, R. K. A. Razak, and M. K. Ramis, “Heat transfer characteristics of MWCNT nanofluid in rectangular mini channels,” Int. J. Heat Technol., vol. 36, no. 1, pp. 222–228, 2018. DOI: 10.18280/ijht.360130.
  • M. Kumar, A. Afzal, and M. K. Ramis, “Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations,” Tribol. – Finnish J. Tribol., vol. 35, no. 3, pp. 6–15, 2017.
  • B. H. Salman, H. A. Mohammed, and A. S. H. Kherbeet, “Numerical study of three different approaches to simulate nanofluids flow and heat transfer in a microtube,” Water, vol. 0, no. 0, pp. 1–13, 2014.
  • M. Saeed and M.-H. Kim, “Numerical study on thermal hydraulic performance of water cooled mini-channel heat sinks,” Int. J. Refrig., vol. 69, pp. 147–164, 2016. DOI: 10.1016/j.ijrefrig.2016.05.004.
  • M. Ismail, S. Fotowat, and A. Fartaj, “Numerical simulation of Al2O3/automatic transmission fluid and Al2O3/water nanofluids in a compact heat exchanger,” J. Fluid Flow, Heat Mass Transf., vol. 3, pp. 34–43, 2016.
  • W. I. A. Aly, “Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers,” Energy Convers. Manag., vol. 79, pp. 304–316, 2014. DOI: 10.1016/j.enconman.2013.12.031.
  • X. Liu and J. Yu, “Numerical study on performances of mini-channel heat sinks with non-uniform inlets,” Appl. Therm. Eng., vol. 93, pp. 856–864, 2016. DOI: 10.1016/j.applthermaleng.2015.09.032.
  • F. H. Elham Hosseinirad, “Influence of shape, number and position of horizontal mini-fins on thermal-hydraulic performance of mini-channel heat sink using nanofluid,” Heat Transf. Eng., vol. 38, no. 9, pp. 892–903, 2017.
  • S. Tahir and M. Mital, “Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel,” Appl. Therm. Eng., vol. 39, pp. 8–14, 2012. DOI: 10.1016/j.applthermaleng.2012.01.035.
  • I. Zakaria, W. A. N. W. Mohamed, and W. H. Azmi, “Thermal analysis on heat transfer enhancement and fluid flow for Al2O3 water-ethylene glycol nanofluid in single PEMFC mini channel,” Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng., vol. 9, no. 9, pp. 1661–1666, 2015.
  • L. Zheng, Y. Xie, and D. Zhang, “Numerical investigation on heat transfer performance and flow characteristics in a rectangular air cooling channel (AR = 2) with ridged dimples,” Int. J. Heat Mass Transf., vol. 107, pp. 403–417, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.039.
  • N. Ahammed, L. G. Asirvatham, and S. Wongwises, “Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger,” Exp. Therm. Fluid Sci., vol. 74, pp. 81–90, 2016. DOI: 10.1016/j.expthermflusci.2015.11.023.
  • R. Thakur, “Experimental & CFD investigation of cooling performance of mini-channel heat sink using nanofluid (Al2O3-H2O),” Ph.D. thesis, Thapar University, Patiala, 2015.
  • A. Adil, S. Gupta, and P. Ghosh, “Numerical prediction of heat transfer characteristics of nanofluids in a minichannel flow,” J. Energy, vol. 2014, no. 6, pp. 1–7, 2014. DOI: 10.1155/2014/307520.
  • M. Keshavarz Moraveji, R. Mohammadi Ardehali, and A. Ijam, “CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink,” Int. Commun. Heat Mass Transf., vol. 40, no. 1, pp. 58–66, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.021.
  • C. Bi, G. H. Tang, and W. Q. Tao, “Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves,” Appl. Therm. Eng., vol. 55, no. 1-2, pp. 121–132, 2013. DOI: 10.1016/j.applthermaleng.2013.03.007.
  • M. R. Sohel, R. Saidur, N. H. Hassan, M. M. Elias, S. S. Khaleduzzaman, and I. M. Mahbubul, “Analysis of entropy generation using nanofluid flow through the circular microchannel and minichannel heat sink,” Int. Commun. Heat Mass Transf., vol. 46, pp. 85–91, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.05.011.
  • M. K. Moraveji and R. M. Ardehali, “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” Int. Commun. Heat Mass Transf., vol. 44, pp. 157–164, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.02.012.
  • M. Hassan et al., “Numerical study of entropy generation in a flowing nanofluid used in micro- and minichannels,” Entropy, vol. 15, no. 1, pp. 144–155, 2013. DOI: 10.3390/e15010144.
  • A. Ijam, R. Saidur, and P. Ganesan, “Cooling of minichannel heat sink using nanofluids,” Int. Commun. Heat Mass Transf., vol. 39, no. 8, pp. 1188–1194, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.06.022.
  • O. Manca, S. Nardini, and D. Ricci, “A numerical study of nanofluid forced convection in ribbed channels,” Appl. Therm. Eng., vol. 37, pp. 280–292, 2012. DOI: 10.1016/j.applthermaleng.2011.11.030.
  • Y. Xie, L. Zheng, D. Zhang, and G. Xie, “Entropy generation and heat transfer performances of Al2O3–water nanofluid transitional flow in rectangular channels with dimples and protrusions,” Entropy, vol. 18, no. 4, pp. 148–119, 2016. DOI: 10.3390/e18040148.
  • S. S. Kutty and T. P. A. Babu, “CFD study of single phase flow distribution in rectangular, wavy and offset minichannnels with water,” Int. J. Theor. Appl. Res. Mech. Eng., vol. 1, no. 1, pp. 107–112, 2012.
  • A. Ijam and R. Saidur, “Nanofluid as a coolant for electronic devices (cooling of electronic devices),” Appl. Therm. Eng., vol. 32, no. 1, pp. 76–82, 2012. DOI: 10.1016/j.applthermaleng.2011.08.032.
  • S. M. H. Hashemi, S. A. Fazeli, H. Zirakzadeh, and M. Ashjaee, “Study of heat transfer enhancement in a nanofluid-cooled miniature heat sink,” Int. Commun. Heat Mass Transf., vol. 39, no. 6, pp. 877–884, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.005.
  • S. Shenoy, J. F. Tullius, and Y. Bayazitoglu, “Minichannels with carbon nanotube structured surfaces for cooling applications,” Int. J. Heat Mass Transf., vol. 54, no. 25-26, pp. 5379–5385, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.08.005.
  • X. Xie, Z. Liu, Y. He, and W. Tao, “Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink,” Appl. Therm. Eng., vol. 29, no. 1, pp. 64–74, 2009. DOI: 10.1016/j.applthermaleng.2008.02.002.
  • X. L. Xie, W. Q. Tao, and Y. L. He, “Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink,” J. Electron. Packag., vol. 129, no. 3, pp. 247–255, 2007. DOI: 10.1115/1.2753887.
  • M. Bahiraei, and N. Cheraghi Kazerooni, “Second law analysis of nanofluid flow within a circular minichannel considering nanoparticle migration,” Entropy, vol. 18, no. 10, pp. 378–327, 2016. DOI: 10.3390/e18100378.
  • M. Amini and A. Kianifar, “An analytical study on energy and exergy of a minichannel-based solar collector using Fe 3 O 4 and MgO/water nanofluids,” in International Conference on researches in Science and Engineering, 2016.
  • M. Ismail, S. Fotowat, and A. Fartaj, “Transient response of minichannel heat exchanger using Al2O3-EG/W nanofluid,” SAE Tech. Pap., vol. 2016, pp. 0229–0238, 2016.
  • P. Naphon and L. Nakharintr, “Turbulent two phase approach model for the nanofluids heat transfer analysis flowing through the minichannel heat sinks,” Int. J. Heat Mass Transf., vol. 82, pp. 388–395, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.024.
  • P. Naphon and L. Nakharintr, “Numerical investigation of laminar heat transfer of nanofluid-cooled mini-rectangular fin heat sinks,” J. Eng. Phys. Thermophys., vol. 88, no. 3, pp. 666–675, 2015. DOI: 10.1007/s10891-015-1235-1.
  • I. Zakaria et al., “Thermal Analysis of Heat Transfer Enhancement and Fluid Flow for Low Concentration of Al2O3 Water – Ethylene Glycol Mixture Nanofluid in a Single PEMFC Cooling Plate,” Energy Procedia., vol. 79, pp. 259–264, 2015.
  • A. Afzal, Z. Ansari, A. Faizabadi, and M. Ramis, “Parallelization strategies for computational fluid dynamics software: state of the art review,” Arch. Comput. Methods Eng., vol. 24, no. 2, pp. 337–363, 2017. DOI: 10.1007/s11831-016-9165-4.
  • R. Pinto, A. Afzal, L. D’Souza, Z. Ansari, and A. D. Mohammed Samee, “Computational fluid dynamics in turbomachinery: a review of state of the art,” Arch. Comput. Methods Eng., vol. 24, no. 3, pp. 467–479, 2017. DOI: 10.1007/s11831-016-9175-2.
  • R. N. Pinto, A. Afzal, I. M. Navaneeth, and M. K. Ramis, “Computational analysis of flow in turbines,” in International conference on inventive computation technologies (ICICT), , 2016, p. (3) 1–5.
  • N. Ahammed, L. G. Asirvatham, and S. Wongwises, “Entropy generation analysis of graphene-alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler,” Int. J. Heat Mass Transf., vol. 103, pp. 1084–1097, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.070.
  • S. S. Khaleduzzaman et al., “Energy and exergy analysis of alumina-water nanofluid for an electronic liquid cooling system,” Int. Commun. Heat Mass Transf., vol. 57, pp. 118–127, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.07.015.
  • S. Ebrahim, A. Akbar, and S. M. J. Hosseini, “Cooling performance analysis of water-cooled heat sinks with circular and rectangular minichannels using finite volume method,” Iran. J. Chem. Eng., vol. 37, no. 2, pp. 231–239, 2018.
  • N. M. Muhammad and N. A. C. Sidikv, “Numerical analysis on thermal and hydraulic performance of diverging–converging minichannel heat sink using Al2O3–H2O nanofluid,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 469, pp. 012046, 2019. DOI: 10.1088/1757-899X/469/1/012046.
  • N. Ba, P. Quang, N. Mohd-Ghazali, and O. Jong-Taek, “Convective heat transfer characteristics of single phase liquid in multiport minichannel tube: Experiment and CFD simulation,” Energy Procedia, vol. 75, pp. 3180–3185, 2015. DOI: 10.1016/j.egypro.2015.07.660.
  • V. Kumar and J. Sarkar, “Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3-TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio,” Powder Technol., vol. 345, pp. 717–727, 2019.
  • S. L. Passman and D. A. Drew, Theory of Multicomponent Fluids. 135th ed. New York, NY: Springer Science & Business Media, 2006.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • I. M. Mahbubul, R. Saidur, and M. A. Amalina, “International Journal of Heat and Mass Transfer Latest developments on the viscosity of nanofluids,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp. 874–885, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.10.021.
  • W. Q. T. S. M. Yang, Heat Transfer. 3rd ed. China: Higher Education Press, 1998.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two-component systems,” Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187–191, 1962. DOI: 10.1021/i160003a005.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. New York: John Wiley & Sons, 2011.
  • S. J. Kim and D. Kim, “Forced convection in microstructures for electronic equipment cooling,” Trans. Soc. Mech. Eng. J. Heat Transf., vol. 121, no. 3, pp. 639–645, 1999. DOI: 10.1115/1.2826027.
  • V. Gnielinski, “New equation for heat transfer in turbulent pipe and channel flow,” Int. Chem. Eng., vol. 16, no. 2, pp. 359–368, 1976.
  • R. Shah and A. London, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data. New York: Academic Press, 2014.
  • N. H. Kim and R. L. Webb, Principles of Enhanced Heat Transfer. second ed. Taylor & Francis Group, New York, NY, 2006.
  • S. E. B. Maiga, S. J. Palm, C. T. Nguyen, G. Roy, and N. Galanis, “Heat transfer enhancement by using nanofluids in forced convection flows,” Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 530–546, 2005. DOI: 10.1016/j.ijheatfluidflow.2005.02.004.
  • S. E. B. Maı¨Ga, C. T. Nguyen, N. Galanis, &, and G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices Microstruct., vol. 35, no. 3-6, pp. 543–557, 2004.vol. no.pp. DOI: 10.1016/j.spmi.2003.09.012.
  • S. J. Palm, C. T. Nguyen, and G. Roy, “Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties,” Appl. Therm. Eng., vol. 26, no. 17-18, pp. 2209–2218, 2006. DOI: 10.1016/j.applthermaleng.2006.03.014.
  • S. El Bécaye Maïga, C. Tam Nguyen, N. Galanis, G. Roy, T. Maré, and M. Coqueux, “Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension,” Int. J. Numer. Methods Heat Fluid Flow, vol. 16, no. 3, pp. 275–292, 2006. DOI: 10.1108/09615530610649717.
  • O. Haddad, M. Abuzaid, and M. Al-Nimr, “Entropy generation due to laminar incompressible forced convection flow through parallel-plates microchannel,” Entropy, vol. 6, no. 5, pp. 413–426, 2004. DOI: 10.3390/e6050413.
  • J. Koo and C. Kleinstreuer, “A new thermal conductivity model for nanofluids,” J. Nanoparticle Res., vol. 6, no. 6, pp. 577–588, 2004. DOI: 10.1007/s11051-004-3170-5.
  • G. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech., vol. 83, no. 1, pp. 97–117, 1977. DOI: 10.1017/S0022112077001062.
  • L. S. Sundar, E. V. Ramana, M. K. Singh, and A. C. Sousa, “Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study,” Int. Commun. Heat Mass Transf., vol. 56, pp. 86–95, 2014. DOI: 10.1016/j.icheatmasstransfer.2014.06.009.
  • W. Arshad and H. M. Ali, “Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid,” Int. J. Heat Mass Transf., vol. 110, pp. 248–256, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.032.
  • W. Arshad and H. M. Ali, “Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink,” Int. J. Heat Mass Transf., vol. 107, pp. 995–1001, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.10.127.
  • S. S. Khaleduzzaman et al., “Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink,” Int. J. Heat Mass Transf., vol. 115, pp. 77–85, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.001.
  • G. Narendran, M. M. Bhat, L. Akshay, and D. Arumuga Perumal, “Experimental analysis on exergy studies of flow through a minichannel using TiO2/Water nanofluids,” Therm. Sci. Eng. Prog., vol. 8, pp. 93–104, 2018. DOI: 10.1016/j.tsep.2018.08.007.
  • L. Nakharintr, P. Naphon, and S. Wiriyasart, “Effect of jet-plate spacing to jet diameter ratios on nanofluids heat transfer in a mini-channel heat sink,” Int. J. Heat Mass Transf., vol. 116, pp. 352–361, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.037.
  • M. Saeed and M. H. Kim, “Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks,” Int. J. Heat Mass Transf., vol. 120, pp. 671–682, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.12.075.
  • S. A. Jajja, W. Ali, and H. M. Ali, “Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor,” Heat Transf. Res., vol. 43, no. 7, pp. 653–666, 2014. DOI: 10.1002/htj.21107.
  • S. A. Jajja, W. Ali, H. M. Ali, and A. M. Ali, “Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing,” Appl. Therm. Eng., vol. 64, no. 1-2, pp. 76–82, 2014. DOI: 10.1016/j.applthermaleng.2013.12.007.
  • A. Dominic, J. Sarangan, S. Suresh, and M. Sai, “Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink,” J. Nanosci. Nanotechnol., vol. 14, no. 3, pp. 2368–2376, 2014. DOI: 10.1166/jnn.2014.8543.
  • M. R. Sohel, S. S. Khaleduzzaman, R. Saidur, A. Hepbasli, M. F. M. Sabri, and I. M. Mahbubul, “An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3-H2O nanofluid,” Int. J. Heat Mass Transf., vol. 74, pp. 164–172, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.03.010.
  • C. J. Ho and W. C. Chen, “An experimental study on thermal performance of Al2O 3/water nanofluid in a minichannel heat sink,” Appl. Therm. Eng., vol. 50, no. 1, pp. 516–522, 2013. DOI: 10.1016/j.applthermaleng.2012.07.037.
  • P. Selvakumar and S. Suresh, “Convective performance of CuO/water nanofluid in an electronic heat sink,” Exp. Therm. Fluid Sci., vol. 40, pp. 57–63, 2012. DOI: 10.1016/j.expthermflusci.2012.01.033.
  • S. E. Ghasemi, A. A. Ranjbar, and M. J. Hosseini, “Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid,” Mech. Res. Commun., vol. 84, pp. 85–89, 2017. DOI: 10.1016/j.mechrescom.2017.06.009.
  • S. A. Fazeli, S. M. Hosseini Hashemi, H. Zirakzadeh, and M. Ashjaee, “Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid,” Superlattices Microstruct., vol. 51, no. 2, pp. 247–264, 2012. DOI: 10.1016/j.spmi.2011.11.017.
  • S. Z. Miry, M. Roshani, P. Hanafizadeh, M. Ashjaee, and F. Amini, “Heat transfer and hydrodynamic performance analysis of a miniature tangential heat sink using Al2O3–H2O and TiO2–H2O Nanofluids,” Exp. Heat Transf., vol. 29, no. 4, pp. 536–560, 2016. DOI: 10.1080/08916152.2015.1046016.
  • P. Naphon and L. Nakharintr, “Heat transfer of nanofluids in the mini-rectangular fin heat sinks,” Int. Commun. Heat Mass Transf., vol. 40, no. 1, pp. 25–31, 2013. DOI: 10.1016/j.icheatmasstransfer.2012.10.012.
  • H. M. Ali and W. Arshad, “Effect of channel angle of pin-fin heat sink on heat transfer performance using water based graphene nanoplatelets nanofluids,” Int. J. Heat Mass Transf., vol. 106, pp. 465–472, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.061.
  • H. M. Ali and W. Arshad, “Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids,” Energy Convers. Manag., vol. 106, pp. 793–803, 2015. DOI: 10.1016/j.enconman.2015.10.015.
  • W. Duangthongsuk and S. Wongwises, “A comparison of the heat transfer performance and pressure drop of nanofluid-cooled heat sinks with different miniature pin fin configurations,” Exp. Therm. Fluid Sci., vol. 69, pp. 111–118, 2015. DOI: 10.1016/j.expthermflusci.2015.07.019.
  • M. Khoshvaght-Aliabadi and M. Sahamiyan, “Performance of nanofluid flow in corrugated minichannels heat sink (CMCHS),” Energy Convers. Manag., vol. 108, pp. 297–308, 2016. DOI: 10.1016/j.enconman.2015.11.026.
  • M. Khoshvaght-Aliabadi, S. M. Hassani, and S. H. Mazloumi, “Enhancement of laminar forced convection cooling in wavy heat sink with rectangular ribs and Al2O3/water nanofluids,” Exp. Therm. Fluid Sci., vol. 89, pp. 199–210, 2017. DOI: 10.1016/j.expthermflusci.2017.08.017.
  • M. Khoshvaght-Aliabadi, E. Ahmadian, and O. Sartipzadeh, “Effects of different pin-fin interruptions on performance of a nanofluid-cooled zigzag miniature heat sink (MHS),” Int. Commun. Heat Mass Transf., vol. 81, pp. 19–27, 2017. DOI: 10.1016/j.icheatmasstransfer.2016.12.009.
  • M. U. Sajid, H. M. Ali, A. Sufyan, D. Rashid, W. U. Rehman, and S. U. Zahid, “Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks,” J. Therm. Anal. Calorim., vol. 137, no. 4, pp. 1279–1294, 2019.
  • V. S. D. D. Dominic, A. J. Sarangan, and S. Suresh, “An experimental investigation of wavy and straight minichannel heat sinks using water and nanofluids,” J. Therm. Sci. Eng. Appl., vol. 7, pp. 1–9, 2015.
  • C. J. Ho, W. C. Chen, and W. M. Yan, “Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles,” Int. J. Heat Mass Transf., vol. 69, pp. 293–299, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.030.
  • M. Khoshvaght-Aliabadi, M. Sahamiyan, M. Hesampour, and O. Sartipzadeh, “Experimental study on cooling performance of sinusoidal-wavy minichannel heat sink,” Appl. Therm. Eng., vol. 92, pp. 50–61, 2016. DOI: 10.1016/j.applthermaleng.2015.09.015.
  • C. J. Ho, Y. N. Chung, and C. M. Lai, “Thermal performance of Al2O3/water nanofluid in a natural circulation loop with a mini-channel heat sink and heat source,” Energy Convers. Manag., vol. 87, pp. 848–858, 2014. DOI: 10.1016/j.enconman.2014.07.079.
  • H. Kumar and S. S. Sehgal, “Study of fluid flow and heat transfer through mini-channel heat sink,” Asian J. Eng. Appl. Technol., vol. 2, no. 2, pp. 25–28, 2013.
  • B. Tang, R. Zhou, P. Bai, T. Fu, L. Lu, and G. Zhou, “Heat transfer performance of a novel double-layer mini-channel heat sink,” Heat Mass Transfer, vol. 53, no. 3, pp. 929–936, 2017. DOI: 10.1007/s00231-016-1869-3.
  • C. J. Ho, W. C. Chen, and W. M. Yan, “Experiment on thermal performance of water-based suspensions of Al 2O3 nanoparticles and MEPCM particles in a minichannel heat sink,” Int. J. Heat Mass Transf., vol. 69, pp. 276–284, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.034.
  • C. J. Ho, W. C. Chen, W. M. Yan, and P. Amani, “Contribution of hybrid Al2O3–water nanofluid and PCM suspension to augment thermal performance of coolant in a minichannel heat sink,” Int. J. Heat Mass Transf., vol. 122, pp. 651–659, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.121.
  • C. J. Ho, W. C. Chen, and W. M. Yan, “Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles,” Int. Commun. Heat Mass Transf., vol. 48, pp. 67–72, 2013. DOI: 10.1016/j.icheatmasstransfer.2013.08.023.
  • C. J. Ho, P. C. Chang, W. M. Yan, and P. Amani, “Thermal and hydrodynamic characteristics of divergent rectangular minichannel heat sinks,” Int. J. Heat Mass Transf., vol. 122, pp. 264–274, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.122.
  • M. A. Sani, “Heat transfer enhancement of mini channel using MWCNT nanofluid,” Int. J. Technol. Res. Eng., vol. 4, no. 9, pp. 1692–1702, 2017.
  • Y. Fan, P. S. Lee, L.-W. Jin, and B. W. Chua, “Experimental investigation on heat transfer and pressure drop of a novel cylindrical oblique fin heat sink,” Int. J. Therm. Sci., vol. 76, pp. 1–10, 2014. DOI: 10.1016/j.ijthermalsci.2013.08.007.
  • M. Khoshvaght-Aliabadi, O. Sartipzadeh, S. Pazdar, and M. Sahamiyan, “Experimental and parametric studies on a miniature heat sink with offset-strip pins and Al2O3/water nanofluids,” Appl. Therm. Eng., vol. 111, pp. 1342–1352, 2017. DOI: 10.1016/j.applthermaleng.2016.10.035.
  • M. Khoshvaght-Aliabadi and F. Nozan, “Water cooled corrugated minichannel heat sink for electronic devices: Effect of corrugation shape,” Int. Commun. Heat Mass Transf., vol. 76, pp. 188–196, 2016. DOI: 10.1016/j.icheatmasstransfer.2016.05.021.
  • M. Khoshvaght-Aliabadi, S. M. Hassani, and S. H. Mazloumi, “Comparison of hydrothermal performance between plate fins and plate-pin fins subject to nanofluid-cooled corrugated miniature heat sinks,” Microelectron. Reliab., vol. 70, pp. 84–96, 2017. DOI: 10.1016/j.microrel.2017.01.005.
  • M. Khoshvaght-Aliabadi, S. M. Hassani, and S. H. Mazloumi, “Performance enhancement of straight and wavy miniature heat sinks using pin-fin interruptions and nanofluids,” Chem. Eng. Process. Process Intensif., vol. 122, pp. 90–108, 2017. DOI: 10.1016/j.cep.2017.10.002.
  • A. A. Imran, N. S. Mahmoud, and H. M. Jaffal, “Numerical and experimental investigation of heat transfer in liquid cooling serpentine mini-channel heat sink with different new configuration models,” Therm. Sci. Eng. Prog., vol. 6, pp. 128–139, Mar. 2018. DOI: 10.1016/j.tsep.2018.03.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.