Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 6
104
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional natural heat convection and ternary alloy solidification problems by finite volume geometric multigrid method

&
Pages 632-648 | Received 04 Sep 2019, Accepted 27 Sep 2019, Published online: 28 Jan 2020

References

  • Y. Belhamadia, A. Fortin, and T. Briffard, “A two-dimensional adaptive remeshing method for solving melting and solidification prblems with convection,” Numer. Heat Transfer, Part A, vol. 76, no. 4, pp. 179–197, 2019. DOI: 10.1080/10407782.2019.1627837.
  • N. Ben-Cheikh, B. Ben-Beya, and T. Lili, “Benchmark solution for time-dependent natural convection flows with and accelerated full-multigrid method,” Numer. Heat Transfer, Part B, vol. 52, no. 2, pp. 131–151, 2007. DOI: 10.1080/10407790701347647.
  • A. Alshomrani, S. Sivasankaran, A. Amer, and A. Biswas, “Numerical study on convective flow in a three-dimensional enclosure with hot solid body and discrete cooling,” Numer. Heat Transfer, Part A, vol. 76, no. 2, pp. 87–99, 2019. DOI: 10.1080/10407782.2019.1618626.
  • S. Patankar, and B. Spalding, “A calculation procedure for heat mass and momentum transfer in three dimensional parabolic flows,” Int. J. Heat Mass Transfer, vol. 15, no. 10, pp. 1787–1806, 1972. DOI: 10.1016/0017-9310(72)90054-3.
  • W. Minkowycz, E. Sparrow, and, and J. Murthy, Handbook of Numerical Heat Transfer, 2nd ed. NJ: Wiley, 2006.
  • F. Moukalled, L. Mangani, and, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics. NY: Springer, 2015.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: Hemisphere Publishing Corporation, 1980.
  • J. P. van Doormaal, and G. D. Raithby, “Enhacement of SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transfer, vol. 7, no. 2, pp. 147–163, 1984. DOI: 10.1080/01495728408961817.
  • G. Raithby, and, and G. Schneider, “Elliptic system: Finite difference method II,” in Handbook of Numerical Heat Transfer, W. Minkowycz, E. Sparrow, R. Pletcher, and G. Schneider, Eds. NY: Wiley, 1988, pp. 241–289.
  • B. Yu, H. Ozoe, and W. Q. Tao, “A modified pressure-correction scheme for the SIMPLER method, MSIMPLER,” Numer. Heat Transfer, Part B, vol. 39, pp. 65–78, 1998. DOI: 10.1080/104077901750188831.
  • W. Jin, W. Tao, Y. He, and Z. Li, “Analysis of inconsistency of SIMPLE-like algorithms and an entirely consistent update technique-the CUT algorithm,” Numer. Heat Transfer, Part B, vol. 53, no. 4, pp. 289–312, 2008. DOI: 10.1080/10407790701703674.
  • D. Sun, Z. Qu, Y. He, and W. Tao, “Performance analysis of IDEAL algorithm for three-dimensional incompressible fluid flow and heat transfer problems,” Int. J. Numer. Meth. Fluid, vol. 61, no. 10, pp. 1132–1160, 2009. DOI: 10.1002/fld.2004.
  • D. Sun, Z. Qu, Y. He, and W. Tao, “Implementation of an efficient segregated algorithm-IDEAL on 3-D collocated grid system,” Ch. Sci. Bull., vol. 54, no. 6, pp. 292–942, 2009. DOI: 10.1007/s11434-009-0124-4.
  • D. Sun, W. Tao, J. Xu, and Z. Qu, “Implementation of the IDEAL algorithm on non-orthogonal curvilinear coordinates for the solution of 3-D incompressible fluid flow and heat transfer problems,” Numer. Heat Transfer, Part B, vol. 59, no. 2, pp. 147–168, 2011. DOI: 10.1080/10407790.2010.541357.
  • P. Ding, and D. Sun, “A pressure-based segregated solver for incompressible flow on unstructured grids,” Numer. Heat Transfer, Part B, vol. 64, no. 6, pp. 460–479, 2013. DOI: 10407790.2013.831682.
  • Y. Deng, D. Sun, Y. Liang, B. Yu, and P. Wang, “Implementation of the IDEAL algorithm for complex steady-state incompressible fluid flow problems in OpenFOAM,” Int. Comm. Heat Mass Transfer, vol. 88, pp. 63–73, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.08.004.
  • J. Li, Q. Zhang, and Z. Q. Zhai, “An efficient SIMPLER-revised algorithm for incompressible flow with unstructured grids,” Numer. Heat Transfer, Part B, vol. 71, no. 5, pp. 425–442, 2017. DOI: 10.1080/10407790.2017.1293965.
  • B. Xie, and F. Xiao, “Accurate and robust PISO algorithm on hybrid unstructured grids using the multimoment finite volume method,” Numer. Heat Transfer, Part B, vol. 71, no. 2, pp. 146–172, 2017. DOI: 10.1080/10407790.2016.1265325.
  • P. Fedorenko, “A relaxation method for solving elliptic difference equations,” USSR Comput. Math. Math. Phys., vol. 1, no. 4, pp. 1092–1096, 1962. DOI: 10.1016/0041-553(62)90031-9.
  • A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. Bonn, Germany: Gesellshaft für Mathematik und Datenverarbeitung (GMD), 1984.
  • W. Hackbush, Multigrid Methods and Applications. Berlin, Germany: Springer, 1985.
  • U. Trottenberg, C. Oosterlee, and, and A. Schüller, Mutigrid. San Diego, CA: Academic Press, 2001.
  • C. Filelis-Papadopoulos, G. Gravvanis, and E. Lipitakis, “On the numerical modeling of convection-diffusion problems by finite element multigrid preconditioning methods,” Adv. Eng. Softw., vol. 68, pp. 56–69, 2014. DOI: 10.1016/j.advengsoft.2013.12.002.
  • C. Santiago, C. Marchi, and L. Souza, “Performance of geometric multigrid method for coupled two-dimensional systems in CFD,” Appl. Math. Mod., vol. 39, no. 9, pp. 2602–2616, 2015. DOI: 10.1016/j.apm.2014.10.067.
  • N. Bayramov, and J. Kraus, “Multigrid methods for convection-diffusion problems discretized by a monotone scheme,” Comput. Methods Appl. Mech. Eng., vol. 317, pp. 723–745, 2017. DOI: 10.1016/j.cma.2017.01.004.
  • M. Thompson, and J. Ferziger, “A multigrid adaptive method for incompressible flows,” J. Comput. Phys., vol. 82, no. 1, pp. 94–121, 1989. DOI: 10.1016/0021-9991(89)90037-5.
  • G. Lygidakis, S. Sarakinos, and I. Nikolos, “Comparison of different agglomeration multigrid schemes for compressible and incompressible flow simulations,” Adv. Eng. Softw., vol. 101, pp. 77–97, 2016. DOI: 10.1016/j.advengsoft.2015.12.004.
  • G. Kanschat, R. Lazarov, and Y. Mao, “Geometric multigrid for Darcy and Brinkman models of flows in highly heterogeneous porous media: A numerical study,” J. Comput. Appl. Math., vol. 310, pp. 174–185, 2017. DOI: 10.1016/j.cam.2016.05.016.
  • M. Hortman, M. Peric, and G. Schenerer, “Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions,” Int. J. Numer. Meth. Fluids, vol. 11, pp. 198–207, 2010. DOI: 10.1002/fld.1650110206.
  • J. Vierendeels, B. Merci, and E. Dick, “A multigrid method for natural convective heat transfer with large temperature differences,” J. Comput. Appl. Math., vol. 168, no. 1–2, pp. 509–517, 2004. DOI: 10.1016/j.cam.2003.08.081.
  • M. Mesquita, and M. de Lemos, “Optimal multigrid solutions of two-dimensional convection-conduction problems,” Appl. Math. Comput., vol. 152, no. 3, pp. 725–742, 2004. DOI: 10.1016/S0096-3003(03)00591-5.
  • L. Tao, “A nonlinear multigrid method for inverse problem in the multiphase porous media flow,” Appl. Math. Comput., vol. 320, pp. 271–281, 2018. DOI: 10.1016/j.amc.2017.09.039.
  • G. Muratova, and E. Andreeva, “Multigrid method for solving convection-diffusion problems with dominant convection,” J. Comput. Appl. Math., vol. 226, no. 1, pp. 77–83, 2009. DOI: 10.1016/j.cam.2008.05.055.
  • R. Dai, Y. Wang, and J. Zhan, “Fast and high accuracy multiscale multigrid method with multiple coarse grid updating strategy for the 3-D convection-diffusion equation,” Comput. Math. Appl., vol. 66, pp. 542–559, 2013. DOI: 10.1016/j.camwa.2013.06.008.
  • S. Khelifi, N. Méchitoua, F. Hülsemann, and F. Magoulès, “A hybrid multigrid method for convection-diffusion problems,” J. Comput. Appl. Math., vol. 259, pp. 711–719, 2014. DOI: 10.1016/j.cam.2013.05.003.
  • G. N. Lygidakis, and I. Nikolos, “Assessment of different spatial/angular agglomeration multigrid schemes for the acceleration of FVM radiative heat transfer computations,” Numer. Heat Transfer, Part B, vol. 69, no. 5, pp. 389–412, 2016. DOI: 10.1080/10407790.2016.1265325.
  • Z. H. Li, L. Chen, and W. Q. Tao, “A parallel scalable multigrid method and HOC scheme for anisotropy elliptic problems,” Numer. Heat Transfer, Part B, vol. 71, no. 4, pp. 346–358, 2017. DOI: 10.1080/10407790.2017.1293959.
  • N. Moraga, M. Marambio, and R. Cabrales, “Geometric multigrid technique for solving heat convection-diffusion and phase change problems,” Int. Comm. Heat Mass Transfer, vol. 88, pp. 108–119, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.08.012.
  • R. Issa, A. Gosman, and A. Watkins, “The computation of compressible and incompressible recirculating flows,” J. Comput. Phys., vol. 62, no. 1, pp. 66–82, 1986. DOI: 10.1016/0021-9991(86)90100-2.
  • A. Zografos, W. Martin, and J. Sunderland, “Equation of properties as a function of temperature for seven fluids,” J. Comput. Meth. Appl. Mech. Eng., vol. 61, no. 2, pp. 177–187, 1987. DOI: 10.1016/0045-7825(87)90003-X.
  • E. Tombarevic, and I. Vusanovic, “Modeling of Ice-Water Phase Change in Horizontal Annulus Using Modified Enthalpy Method,” Adv. Appl. Math. Mech., vol. 3, pp. 354–369, 2011. DOI: 10.4208/aamm.10-10s2-06.
  • J. Tamminen, “Thermal analysis for investigation of solidification mechanisms in metal and alloys,” PhD thesis, University of Stockholm, Sweden, 1988.
  • T. Fusegi, J. Hyun, and K. Kuwahara, “Three-dimensional simulations of natural convection in a sidewall-heated cube,” Int. J. Numer. Meth. Fluids, vol. 13, no. 7, pp. 857–867, 1991. DOI: 10.1002/fld.1650130704.
  • J. Banasek, Y. Jaluria, T. Kowalewski, and M. Rebow, “Semi-implicit FEM analysis of natural convection in freezing water,” Numer. Heat Transfer, Part A, vol. 36, pp. 449–472, 1999. DOI: 10.1080/104077899274624.
  • M. Cruchaga, and D. Celentano, “A finite element thermally coupled flow formulation for phase-change problems,” Int. J. Numer. Meth. Fluids, vol. 34, no. 4, pp. 279–305, 2000. DOI: 10.1002/(SICI)1099-0887(199808)14:8 < 719::AID-CNM177 > 3.0.CO;2-S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.