Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 6
1,302
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Numerical investigation of particle deposition in film-cooled blade leading edge

, , , &
Pages 579-598 | Received 18 Aug 2019, Accepted 27 Dec 2019, Published online: 28 Jan 2020

References

  • A. Azzi, M. Abidat, B. A. Jubran, and G. S. Theodoridis, “Film cooling predictions of simple and compound angle injection from one and two staggered rows,” Numer. Heat Transf. A Appl., vol. 40, no. 3, pp. 273–294, Jul. 2001. DOI: 10.1080/10407782.2001.10120637.
  • K. Singh, B. Premachandran, M. R. Ravi, B. Suresh, and S. Vasudev, “Prediction of film cooling effectiveness over a flat plate from film heating studies,” Numer. Heat Transf. A Appl., vol. 69, no. 5, pp. 529–544, November 2016. DOI: 10.1080/10407782.2015.1090232.
  • J. Wang, C. Gu, and B. Sundén, “Investigations of film cooling and its nonuniform distribution for the conjugate heat transfer passage with a compound inclined angle jet,” Numer. Heat Transf. A Appl., vol. 69, no. 1, pp. 14–30, September 2016. DOI: 10.1080/10407782.2015.1023156.
  • B. T. An, J. J. Liu, X. D. Zhang, S. J. Zhou, and C. Zhang, “Film cooling effectiveness measurements of a near surface streamwise diffusion hole,” Int. J. Heat Mass Transf., vol. 103, pp. 1–13, Dec. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.07.028.
  • K. Mazaheri, K. C. Kiani, and M. Karimi, “Application of a modified algebraic heat-flux model and second-moment-closure to high blowing-ratio film-cooling and corrugated heat-exchanger simulations,” Appl. Therm. Eng., vol. 124, pp. 948–966, Sep. 2017. DOI: 10.1016/j.applthermaleng.2017.06.093.
  • S. Ardey and L. Fottner, “A systematic experimental study on the aerodynamics of leading edge film cooling on a large scale high pressure turbine cascade,” ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, ASME, New York, NY, USA, Paper No. 98-GT-434, pp. V004T09A074, 1998. DOI: 10.1115/98-GT-434.
  • S. B. Islami, S. P. A. Tabrizi, B. A. Jubran, and E. Esmaeilzadeh, “Influence of trenched shaped holes on turbine blade leading edge film cooling,” Heat Transf. Eng., vol. 31, no. 10, pp. 889–906, Jul. 2010. DOI: 10.1080/01457630903550317.
  • S. Khajehhasani and B. Jubran, “Numerical evaluation of the performance of the sister-shaped single-hole schemes on turbine blade leading edge film cooling,” ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, ASME, New York, NY, USA, Paper No. GT2015-44121, pp. V05BT12A053, 2015. DOI: 10.1115/GT2015-44121.
  • C. Giehl, R. Brooker, H. Marxer, and M. Nowak, “An experimental simulation of volcanic ash deposition in gas turbines and implications for jet engine safety,” Chem. Geol., vol. 461, pp. 160–170, Jun. 2017. DOI: 10.1016/j.chemgeo.2016.11.024.
  • C. R. Cosher and M. G. Dunn, “Comparison of the sensitivity to foreign particle ingestion of the GE-F101 and P/W-F100 engines to modern aircraft engines,” ASME Turbo Expo 2016: Turbine Technical Conference and Exposition, ASME, New York, NY, USA, Paper No. GT2016-56052, pp. V001T01A001, 2016. DOI: 10.1115/GT2016-56052.
  • J. Wang, M. Vujanovic, and B. Sunden, “A review of multiphase flow and deposition effect in film-cooling gas turbine,” Therm. Sci., vol. 22, no. 5, pp. 1905–1921, Sep. 2018. DOI: 10.2298/TSCI180108258W.
  • W. W. Xu, K. H. Zhu, J. J. Wang, Y. J. Lin, and Q. Li, “Modeling and numerical analysis of the effect of blade roughness on particle deposition in a flue gas turbine,” Powder Technol., vol. 347, pp. 59–65, Apr. 2019.
  • A. Mensch and K. Thole, “Simulations of multiphase particle deposition on a gas turbine endwall with impingement and film cooling,” J. Turbomach., vol. 137, no. 11, pp. 111002, Nov. 2015. DOI: 10.1115/1.4031177.
  • S. Wylie, A. Bucknell, P. Forsyth, M. McGilvray, and D. R. H. Gillespie, “Reduction in flow parameter resulting from volcanic ash deposition in engine representative cooling passages,” J. Turbomach., vol. 139, no. 3, pp. 031008, Mar. 2017. DOI: 10.1115/1.4034939.
  • J. Wang, K. Tian, K. Zhang, J. Baleta, and B. Sundén, “Effect of spherical blockage configurations on film cooling,” Therm. Sci., vol. 22, no. 5, pp. 1933–1942, Feb. 2018. DOI: 10.2298/TSCI171229257W.
  • J. N. Pan, J. J. Wang, S. F. Chen, X. X. Zhang, and S. Liu, “Numerical study of inlet Reynolds number in fine particles deposition processes in a flue gas turbine,” Powder Technol., vol. 339, pp. 506–520, Nov. 2018. DOI: 10.1016/j.powtec.2018.08.032.
  • R. Prenter, A. Ameri, and J.P. Bons, “Computational simulation of deposition in a cooled high-pressure turbine stage with hot streaks,” J. Turbomach., vol. 139, no. 9, pp. 091005, Feb. 2017.
  • S. S. Sreedharan and D. K. Tafti, “Composition dependent model for the prediction of syngas ash deposition in turbine gas hotpath,” Int. J. Heat Fluid Flow, vol. 32, no. 1, pp. 201–211, Feb. 2011. DOI: 10.1016/j.ijheatfluidflow.2010.10.006.
  • S. Singh and D. Tafti, “Particle deposition model for particulate flows at high temperatures in gas turbine components,” Int. J. Heat Fluid Flow, vol. 52, pp. 72–83, Apr. 2015. DOI: 10.1016/j.ijheatfluidflow.2014.11.008.
  • B. P. Casaday, A. A. Ameri, and J. P. Bons, “Numerical investigation of ash deposition on nozzle guide vane endwalls,” Trans. Asme J. Eng. Gas Turbines Power, vol. 135, no. 3, pp. 032001, Jul. 2013. DOI: 10.1115/1.4007736.
  • H. El-Batsh and H. Haselbacher, “Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades,” ASME Turbo Expo 2002: Power for Land, Sea, and Air, ASME, New York, NY, USA, Paper No. GT2002-30600, pp. 1035–1043, 2002. DOI: 10.1115/GT2002-30600.
  • W. G. Ai and T. H. Fletcher, “Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane,” J. Turbomach., vol. 134, no. 4, pp. 041020, Jul. 2012. DOI: 10.1115/1.4003716.
  • C. H. Wang, J. Z. Zhang, and J. H. Zhou, “Investigation of particle deposition characteristics in vicinity of laidback fan-shaped film cooling holes,” Flow Turbul. Combust., vol. 97, no. 2, pp. 591–607, Feb. 2016. DOI: 10.1007/s10494-015-9697-y.
  • J. Wang, P. Cui, B. Sundén, and M. Vujanović, “Effects of deposition height and width on film cooling,” Numer. Heat Transf. A Appl., vol. 70, no. 6, pp. 673–687, Aug. 2016.
  • J. Wang, P. Cui, B. Sundén, and R. Yang, “Effects of deposition locations on film cooling with and without a mist injection,” Numer. Heat Transf. A Appl., vol. 70, no. 10, pp. 1072–1086, Oct. 2016. DOI: 10.1080/10407782.2016.1230395.
  • J. Wang, Q. Li, B. Sundén, J. Baleta, and M. Vujanović, “Two-phase flow simulation of mist film cooling with deposition for various boundary conditions,” Numer. Heat Transf. A Appl., vol. 71, no. 9, pp. 895–909, Jun. 2017. DOI: 10.1080/10407782.2017.1326790.
  • S. Ardey, “3D-Messung des strömungsfeldes um die filmgekühlte vorderkante einer referenzschaufel,” Ph.D. thesis, University of the Armed Forces, Munich, Germany, 1998.
  • D. E. Bohn and K. A. Kusterer, “Aerothermal investigations of mixing flow phenomena in case of radially inclined ejection holes at the leading edge,” J. Turbomach., vol. 122, no. 2, pp. 334–339, Apr. 2000. DOI: 10.1115/1.555456.
  • S. J. Wolff, “Aerodynamische effekte bei vorderkanten-filmkühlausblasung an hochbelasteten turbinengittern unter dem einfluss periodisch instationärer zuströmung,” Ph.D. thesis, University of the Armed Forces, Munich, Germany, 2003.