Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 6
153
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The arrangement orientation effect on turbulent convection heat transfer of supercritical LNG in submerged combustion vaporizer

, , , , &
Pages 649-665 | Received 17 Oct 2019, Accepted 29 Dec 2019, Published online: 04 Feb 2020

References

  • G. E. Engdahl, “Submerged combustion LNG vaporizer”, US 7168395, 2007.
  • C. L. Han, H. Q. Sun, and Z. Y. Li, “Thermal performance analysis and optimization design for LNG submerged combustion vaporizer,” Cryogenics, vol. 95, pp. 47–56, 2018. DOI: 10.1016/j.cryogenics.2018.08.008.
  • J. J. Ren, C. L. Han, W. P. Dong, and M. B. Bi, “The trans-critical heat transfer characteristics of LNG in a submerged combustion vaporizer under different operating pressures,” Cryogenics, vol. 88, pp. 51–56, 2017. DOI: 10.1016/j.cryogenics.2017.10.011.
  • D. S. Chen and Y. M. Shi, “Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube,” Cryogenics, vol. 57, pp. 18–25, 2013. DOI: 10.1016/j.cryogenics.2013.04.003.
  • J. H. Bai, J. Pan, G. Wu, and L. H. Tang, “Numerical analysis on heat transfer of supercritical pressure LNG in serpentine tube,” Cryogenics, vol. 101, pp. 101–110, 2019. DOI: 10.1016/j.cryogenics.2019.06.010.
  • P. K. Chidambaram, Y. M. Jo, and H. D. Kim, “Theoretical and computational analyses of LNG evaporator,” J. Therm. Sci., vol. 26, no. 2, pp. 132–137, 2017. DOI: 10.1007/s11630-017-0921-z.
  • X. Zou et al., “Experimental study on saturated flow boiling heat transfer of R170/R290 mixtures in horizontal tube,” Int. J. Refrig., vol. 33, no. 2, pp. 371–380, 2010. DOI: 10.1016/j.ijrefrig.2009.10.013.
  • Y. C. Park and J. Kim, “Submerged combustion vaporizer optimization using entropy minimization method,” Appl. Therm. Eng., vol. 103, pp. 1071–1076, 2016. DOI: 10.1016/j.applthermaleng.2016.04.133.
  • M. Ciofalo, A. Arini, and M. D. Liberto, “On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils,” Int. J. Heat Mass Transf., vol. 82, pp. 123–134, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.10.074.
  • R. N. Xu, F. Luo, and P. X. Jiang, “Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube,” Int. J. Heat Mass Transf., vol. 91, pp. 552–561, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.08.001.
  • J. L. Xu, C. Y. Yang, W. Zhang, and D. L. Sun, “Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure,” Int. J. Heat Mass Transf., vol. 80, pp. 748–758, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.09.006.
  • D. E. Kim and M. H. Kim, “Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube,” Nucl. Eng. Des., vol. 240, no. 10, pp. 3336–3349, 2010. DOI: 10.1016/j.nucengdes.2010.07.002.
  • J. F. Guo et al., “Thermal-hydraulic characteristics of supercritical pressure CO2 vertical tubes under cooling and heating conditions,” Energy, vol. 170, pp. 1067–1081, 2019. DOI: 10.1016/j.energy.2018.12.177.
  • R. Henniche and A. Korichi, “Heat transfer enhancement in self-sustained oscillatory flow in a staggered baffled vertical channel under the buoyancy effect,” Numer. Heat Transf. Part A. Appl., vol. 71, no. 12, pp. 1189–1204, 2017. DOI: 10.1080/10407782.2017.1353370.
  • M. Pizzarelli, “A CFD-derived correlation for methane heat transfer deterioration,” Numer. Heat Transf. Part A Appl., vol. 69, no. 3, pp. 242–264, 2016. DOI: 10.1080/10407782.2015.1080575.
  • X. X. Xu, C. Liu, C. B. Dang, Y. Y. Wu, and X. X. Liu, “Experimental investigation on heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube,” Int. J. Refrig., vol. 67, pp. 190–201, 2016. DOI: 10.1016/j.ijrefrig.2016.03.010.
  • W. Li et al., “The effect of gravity on R410A condensing flow in horizontal circular tubes,” Numer. Heat Transf. Part A Appl., vol. 71, no. 3, pp. 327–340, 2017. DOI: 10.1080/10407782.2016.1264743.
  • X. X. Liu et al., “Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles,” Appl. Therm. Eng., vol. 116, pp. 500–515, 2017. DOI: 10.1016/j.applthermaleng.2017.01.103.
  • Z. H. Li et al., “Effect of internal helical-rib roughness on mixed convection flow and heat transfer in heated horizontal pipe flow of supercritical water,” Int. J. Heat Mass Transf., vol. 130, pp. 1272–1287, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.045.
  • J. E. Bardina, P. G. Huang, and T. J. Coakley, “Turbulence modeling validation”, presented at the 28th AIAA fluid dynamics conference, Snowmass Village, Colorado, USA, 1997, pp. 1997–2121. DOI: 10.2514/6.1997-2121.
  • S. M. Lee and K. Y. Kim, “Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations,” Heat Mass Transf., vol. 49, no. 7, pp. 1021–1028, 2013. DOI: 10.1007/s00231-013-1149-4.
  • G. T. Gargioni, P. S. B. Zdanski, and M. Vaz, Jr., “Heat transfer enhancement in flow past triangular turbulence promoters in closed channels,” Numer. Heat Transf. Part A Appl., vol. 75, no. 5, pp. 309–326, 2019. DOI: 10.1080/10407782.2019.1582986.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a hollow horizontal cylinder with external longitudinal fins: a numerical approach,” Numer. Heat Transf. Part A Appl., vol. 74, no. 7, pp. 1405–1423, 2018. DOI: 10.1080/10407782.2018.1505096.
  • K. Yamagata, K. Nishikawa, S. Hasegawa, T. Fujii, and S. Yoshida, “Forced convective heat transfer to supercritical water flowing in tubes,” Int. J. Heat Mass Transf., vol. 15, no. 12, pp. 2575–2593, 1972. DOI: 10.1016/0017-9310(72)90148-2.
  • J. W. Ackerman, “Pseudo boiling heat transfer to supercritical pressure water in smooth and ribbed tubes,” J. Heat Transf. Trans. ASME, vol. 92, no. 3, pp. 490–497, 1970. DOI: 10.1115/1.3449698.
  • W. R. Dean and J. M. Hurst, “Note on motion of fluid in a curved pipe,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 4, no. 20, pp. 208–223, 1927. DOI: 10.1112/S002557930000197.
  • J. D. Jackson and W. B. Hall, “Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions,” in Turbulent Forced Convection in Channels and Bundles, Theory and Apply to Heat Exchanger and Nuclear Reactor, S. Kakacs and D.B. Spalding, Eds. New York, USA: Hemisphere Publishing Corporation, vol. 2, 1979, pp. 613–640.
  • P. X. Jiang, B. Liu, C. R. Zhao, and F. Luo, “Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime,” Int. J. Heat Mass Transf., vol. 56, no. 1-2, pp. 741–749, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.08.038.
  • L. J. Li, C. X. Lin, and M. A. Ebadian, “Turbulent heat transfer to near-critical water in a heated curved pipe under the conditions of mixed convection,” Int. J. Heat Mass Transf., vol. 42, no. 16, pp. 3147–3158, 1999. DOI: 10.1016/S0017-9310(98)00365-2.
  • X. F. Li, F. Q. Zhong, X. J. Fan, X. L. Huai, and J. Cai, “Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure,” Appl. Therm. Eng., vol. 30, no. 13, pp. 1845–1851, 2010. DOI: 10.1016/j.applthermaleng.2010.04.022.
  • J. Prusa and L. S. Yao, “Numerical solution for fully developed flow in heated curved tubes,” J. Fluid Mech., vol. 123, pp. 503–522, 1982. DOI: 10.1017/S0022112082003176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.