Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 6
261
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Fast computation of desired thermal dose: Application to focused ultrasound-induced lesion planning

ORCID Icon, , , & ORCID Icon
Pages 666-682 | Received 16 Aug 2019, Accepted 30 Dec 2019, Published online: 04 Feb 2020

References

  • E. Li, G. R. Liu, and V. Tan, “Simulation of hyperthermia treatment using the edge-based smoothed finite-element method,” Numer. Heat Transf. Part A Appl., vol. 57, no. 11, pp. 822–847, 2010. DOI: 10.1080/10407782.2010.489483.
  • N. Afrin and Y. Zhang, “Uncertainty analysis of thermal damage to living biological tissues by laser irradiation based on a generalized duel-phase lag model,” Numer. Heat Transf. Part A Appl., vol. 71, no. 7, pp. 693–706, 2017. DOI: 10.1080/10407782.2017.1308714.
  • J. Zhang, J. Hills, Y. Zhong, B. Shirinzadeh, J. Smith, and C. Gu, “Modeling of soft tissue thermal damage based on GPU acceleration,” Comput. Assist. Surg. (Abingdon), vol. 24, no. sup1, pp. 5–12, 2019. DOI: 10.1080/24699322.2018.1557891.
  • R. O. Illing et al., “The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population,” Br. J. Cancer, vol. 93, no. 8, pp. 890–895, 2005. DOI: 10.1038/sj.bjc.6602803.
  • J. E. Kennedy et al., “High-intensity focused ultrasound for the treatment of liver tumours,” Ultrasonics, vol. 42, no. 1-9, pp. 931–935, 2004. DOI: 10.1016/j.ultras.2004.01.089.
  • H. P. Kok, A. Kotte, and J. Crezee, “Planning, optimisation and evaluation of hyperthermia treatments,” Int. J. Hyperthermia, vol. 33, no. 6, pp. 593–607, 2017. DOI: 10.1080/02656736.2017.1295323.
  • V. Lopresto, R. Pinto, L. Farina, and M. Cavagnaro, “Treatment planning in microwave thermal ablation: clinical gaps and recent research advances,” Int. J. Hyperthermia, vol. 33, no. 1, pp. 83–100, 2017. DOI: 10.1080/02656736.2016.1214883.
  • H. P. Kok, P. Wust, P. R. Stauffer, F. Bardati, G. C. van Rhoon, and J. Crezee, “Current state of the art of regional hyperthermia treatment planning: a review,” Radiat. Oncol., vol. 10, no. 1, pp. 196, 2015. DOI: 10.1186/s13014-015-0503-8.
  • C. Rieder, T. Kroger, C. Schumann, and H. K. Hahn, “GPU-based real-time approximation of the ablation zone for radiofrequency ablation,” IEEE Trans. Vis. Comput. Graph, vol. 17, no. 12, pp. 1812–1821, 2011. DOI: 10.1109/TVCG.2011.207.
  • T. Williamson, S. Everitt, and S. Chauhan, “Automated geometric optimization for robotic HIFU treatment of liver tumors,” Comput. Biol. Med., vol. 96, pp. 1–7, 2018. DOI: 10.1016/j.compbiomed.2018.02.014.
  • G. T. Haar and C. Coussios, “High intensity focused ultrasound: physical principles and devices,” Int. J. Hyperthermia, vol. 23, no. 2, pp. 89–104, 2007. DOI: 10.1080/02656730601186138.
  • I. A. S. Elhelf, H. Albahar, U. Shah, A. Oto, E. Cressman, and M. Almekkawy, “High intensity focused ultrasound: the fundamentals, clinical applications and research trends,” Diagn. Interv. Imaging, vol. 99, no. 6, pp. 349–359, 2018. DOI: 10.1016/j.diii.2018.03.001.
  • M. M. Paulides et al., “Simulation techniques in hyperthermia treatment planning,” Int. J. Hyperthermia, vol. 29, no. 4, pp. 346–357, 2013. DOI: 10.3109/02656736.2013.790092.
  • V. A. Salgaonkar, P. Prakash, and C. J. Diederich, “Temperature superposition for fast computation of 3D temperature distributions during optimization and planning of interstitial ultrasound hyperthermia treatments,” Int. J. Hyperthermia, vol. 28, no. 3, pp. 235–249, 2012. DOI: 10.3109/02656736.2012.662666.
  • J. Coon, N. Todd, and R. Roemer, “HIFU treatment time reduction through heating approach optimisation,” Int. J. Hyperthermia, vol. 28, no. 8, pp. 799–820, 2012. DOI: 10.3109/02656736.2012.738846.
  • X. Chen, C. J. Diederich, J. H. Wootton, J. Pouliot, and I. C. Hsu, “Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia,” Int. J. Hyperthermia, vol. 26, no. 1, pp. 39–55, 2010. DOI: 10.3109/02656730903341332.
  • H. P. Kok, C. A. van den Berg, A. Bel, and J. Crezee, “Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks,” Med. Phys., vol. 40, no. 10, pp. 103303, 2013. DOI: 10.1118/1.4821544.
  • S. K. Das, S. T. Clegg, and T. V. Samulski, “Computational techniques for fast hyperthermia temperature optimization,” Med. Phys., vol. 26, no. 2, pp. 319–328, 1999. DOI: 10.1118/1.598519.
  • C. Ding, X. Cui, R. R. Deokar, G. Li, Y. Cai, and K. K. Tamma, “An isogeometric independent coefficients (IGA-IC) reduced order method for accurate and efficient transient nonlinear heat conduction analysis,” Numer. Heat Transf. Part A Appl., vol. 73, no. 10, pp. 667–684, 2018. DOI: 10.1080/10407782.2018.1470420.
  • T. Williamson, W. Cheung, S. K. Roberts, and S. Chauhan, “Ultrasound-based liver tracking utilizing a hybrid template/optical flow approach,” Int. J. CARS, vol. 13, no. 10, pp. 1605–1615, 2018. DOI: 10.1007/s11548-018-1780-0.
  • A. Mustafa, R. Abhilash, and S. Chauhan, “Organ movement and targeting during non-invasive therapy and surgery,” SM J. Biomed. Eng., vol. 3, no. 1, pp. 1014, 2017.
  • S. Chauhan and A. Rh, “Physiological motion and registration of abnormalities in liver during focused ultrasound surgery,” Phys. Procedia, vol. 87, pp. 48–53, 2016. DOI: 10.1016/j.phpro.2016.12.009.
  • R. H. Abhilash, S. Chauhan, M. V. Che, C. C. Ooi, R. A. Bakar, and R. H. Lo, “Quantitative study on the effect of abnormalities on respiration-induced kidney movement,” Ultrasound Med. Biol., vol. 42, no. 7, pp. 1681–1688, 2016. DOI: 10.1016/j.ultrasmedbio.2016.01.015.
  • R. H. Abhilash and S. Chauhan, “Empirical modeling of renal motion for improved targeting during focused ultrasound surgery,” Comput. Biol. Med., vol. 43, no. 4, pp. 240–247, 2013. DOI: 10.1016/j.compbiomed.2012.11.006.
  • J. Zhang and S. Chauhan, “Fast explicit dynamics finite element algorithm for transient heat transfer,” Int. J. Therm. Sci., vol. 139, pp. 160–175, 2019. DOI: 10.1016/j.ijthermalsci.2019.01.030.
  • J. Zhang and S. Chauhan, “Real-time computation of bio-heat transfer in the fast explicit dynamics finite element algorithm (FED-FEM) framework,” Numer. Heat Transf. Part B Fundam., vol. 75, no. 4, pp. 217–238, 2019. DOI: 10.1080/10407790.2019.1627812.
  • J. Zhang and S. Chauhan, “Neural network methodology for real-time modelling of bio-heat transfer during thermo-therapeutic applications,” Artif. Intell. Med., vol. 101, pp. 101728, 2019. DOI: 10.1016/j.artmed.2019.101728.
  • Y. H. Hsiao, S. J. Kuo, H. D. Tsai, M. C. Chou, and G. P. Yeh, “Clinical application of high-intensity focused ultrasound in cancer therapy,” J. Cancer, vol. 7, no. 3, pp. 225–231, 2016. DOI: 10.7150/jca.13906.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • M. C. Kolios, A. E. Worthington, M. D. Sherar, and J. W. Hunt, “Experimental evaluation of two simple thermal models using transient temperature analysis,” Phys. Med. Biol., vol. 43, no. 11, pp. 3325–3340, 1998. DOI: 10.1088/0031-9155/43/11/011.
  • M. Ge, K. Chua, C. Shu, and W. Yang, “Analytical and numerical study of tissue cryofreezing via the immersed boundary method,” Int. J. Heat Mass Transf., vol. 83, pp. 1–10, 2015. DOI: 10.1016/j.ijheatmasstransfer.2014.11.077.
  • E. H. Wissler, “Pennes’ 1948 paper revisited,” J. Appl. Physiol., vol. 85, no. 1, pp. 35–41, 1998. DOI: 10.1152/jappl.1998.85.1.35.
  • G. Kalantzis, W. Miller, W. Tichy, and S. LeBlang, “A GPU accelerated finite differences method of the bioheat transfer equation for ultrasound thermal ablation,” in Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Roger Lee, Ed. Switzerland: Springer International Publishing, 2016, pp. 45–55.
  • P. Mariappan et al., “GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours,” Int. J. CARS, vol. 12, no. 1, pp. 59–68, 2017. DOI: 10.1007/s11548-016-1469-1.
  • C. W. Huang, M. K. Sun, B. T. Chen, J. Shieh, C. S. Chen, and W. S. Chen, “Simulation of thermal ablation by high-intensity focused ultrasound with temperature-dependent properties,” Ultrason. Sonochem., vol. 27, pp. 456–465, 2015. DOI: 10.1016/j.ultsonch.2015.06.003.
  • P. Prakash and C. J. Diederich, “Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: Implications for treatment planning, monitoring and control,” Int. J. Hyperthermia, vol. 28, no. 1, pp. 69–86, 2012. DOI: 10.3109/02656736.2011.630337.
  • Z.-Z. He, and J. Liu, “A coupled continuum-discrete bioheat transfer model for vascularized tissue,” Int. J. Heat Mass Transf., vol. 107, pp. 544–556, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.053.
  • E. Li, G. R. Liu, V. Tan, and Z. C. He, “Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method (αFEM),” Int. J. Numer. Methods Biomed. Eng., vol. 26, no. 8, pp. 955–976, 2010. DOI: 10.1002/cnm.1372.
  • A. R. A. Khaled and K. Vafai, “The role of porous media in modeling flow and heat transfer in biological tissues,” Int. J. Heat Mass Transf., vol. 46, no. 26, pp. 4989–5003, 2003. DOI: 10.1016/S0017-9310(03)00301-6.
  • B. R. Loiola, H. R. Orlande, and G. S. Dulikravich, “Thermal damage during ablation of biological tissues,” Numer. Heat Transf. Part A Appl., vol. 73, no. 10, pp. 685–701, 2018. DOI: 10.1080/10407782.2018.1464794.
  • S. Haddadi and M. T. Ahmadian, “Numerical and experimental evaluation of high-intensity focused ultrasound-induced lesions in liver tissue ex vivo,” J. Ultrasound Med., vol. 37, no. 6, pp. 1481–1491, 2018. DOI: 10.1002/jum.14491.
  • P. J. Westervelt, “Parametric acoustic array,” J. Acoust. Soc. Am., vol. 35, no. 4, pp. 535–537, 1963. DOI: 10.1121/1.1918525.
  • Y. Jing, D. Shen, and G. T. Clement, “Verification of the Westervelt equation for focused transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 5, pp. 1097–1101, 2011. DOI: 10.1109/TUFFC.2011.1910.
  • B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am., vol. 131, no. 6, pp. 4324–4336, 2012. DOI: 10.1121/1.4712021.
  • B. E. Treeby and B. T. Cox, “Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian,” J. Acoust. Soc. Am., vol. 127, no. 5, pp. 2741–2748, 2010.
  • B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt., vol. 15, no. 2, pp. 021314, 2010. DOI: 10.1117/1.3360308.
  • T. D. Mast, “Empirical relationships between acoustic parameters in human soft tissues,” Acoust. Res. Lett. Online, vol. 1, no. 2, pp. 37–42, 2000. DOI: 10.1121/1.1336896.
  • W. Karaki Rahul, C. A. Lopez, D. A. Borca-Tasciuc, and S. De, “A continuum thermomechanical model of in vivo electrosurgical heating of hydrated soft biological tissues,” Int. J. Heat Mass Transf., vol. 127, no. Pt A, pp. 961–974, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.006.
  • F. Xu and T. J. Lu, “Chapter 3 skin biothermomechanics,” in Advances in Applied Mechanics, Erik van der Giessen and Hassan Aref, Eds. Academic Press, 2009, pp. 147–248.
  • S. A. Goss, R. L. Johnston, and F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am., vol. 64, no. 2, pp. 423–457, 1978. DOI: 10.1121/1.382016.
  • B. W. Dong, M. Wang, K. Xie, and M. H. Chen, “In vivo measurements of frequency-dependent attenuation in tumors of the liver,” J. Clin. Ultrasound., vol. 22, no. 3, pp. 167–174, 1994. DOI: 10.1002/jcu.1870220304.
  • V. Suomi, J. Jaros, B. Treeby, and R. Cleveland, “Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney,” Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2016, pp. 5648–5651.
  • M. Solovchuk, T. W.-H. Sheu, and M. Thiriet, “Multiphysics modeling of liver tumor ablation by high intensity focused ultrasound,” Commun. Comput. Phys., vol. 18, no. 4, pp. 1050–1071, 2015. DOI: 10.4208/cicp.171214.200715s.
  • J. Zhang, J. Hills, Y. Zhong, B. Shirinzadeh, J. Smith, and C. Gu, “Temperature-dependent thermomechanical modeling of soft tissue deformation,” J. Mech. Med. Biol., vol. 18, no. 08, pp. 1840021, 2018. DOI: 10.1142/S0219519418400213.
  • J. Zhang and S. Chauhan, “Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation,” Comput. Methods Programs Biomed., vol. 187, pp. 105244, 2020. DOI: 10.1016/j.cmpb.2019.105244.
  • J. Zhang, Y. Zhong, and C. Gu, “Deformable models for surgical simulation: a survey,” IEEE Rev. Biomed. Eng., vol. 11, pp. 143–164, 2018. DOI: 10.1109/RBME.2017.2773521.
  • J. Zhang, Y. Zhong, and C. Gu, “Energy balance method for modelling of soft tissue deformation,” Comput.-Aided Des., vol. 93, pp. 15–25, 2017. DOI: 10.1016/j.cad.2017.07.006.
  • J. Zhang, Y. Zhong, and C. Gu, “Neural network modelling of soft tissue deformation for surgical simulation,” Artif. Intell. Med., vol. 97, pp. 61–70, 2019. DOI: 10.1016/j.artmed.2018.11.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.