Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 7
487
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Thermal performance and flow characteristics of two-phase loop thermosyphons

&
Pages 683-701 | Received 05 Oct 2019, Accepted 05 Jan 2020, Published online: 28 Jan 2020

References

  • A. Faghri, Heat Pipe Science and Technology, 2nd ed. Kanpur, Uttar Pradesh: Global Digital Press, 2016.
  • S. Boothaisong, S. Rittidech, T. Chompookham, M. Thongmoon, Y. Ding, and Y. Li, “Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe,” Adv. Mech. Eng., vol. 7, no. 2, pp. 168781401456781, Feb. 2015. 10.1177/1687814014567811. [CrossRef] ]
  • A. Faghri, “Heat pipes and thermosyphons,” in Handbook Thermal Science and Engineering, F. A. Kulacki, Ed. Switzerland: Springer Nature, 2017, pp. 1–50. 10.1007/978-3-319-26695-4_52.
  • A. Faghri, “Review and advances in heat pipe science and technology,” J. Heat Transf., vol. 134, no. 12, pp. 123001, Oct. 2012. DOI: 10.1115/1.4007407.
  • L. M. Poplaski, A. Faghri, and T. L. Bergman, “Analysis of internal and external thermal resistances of heat pipes including fins using a three-dimensional numerical simulation,” Int. J. Heat Mass Transf., vol. 102, pp. 455–469, Nov. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.116.
  • A. Faghri, “Heat pipes: review, opportunites and challenges,” Front. Heat Pipes, vol. 5, no. 1, Apr. 2014. DOI: 10.5098/fhp.5.1.
  • T. L. Bergman and A. Faghri, Review and advances in heat pipe analysis and numerical simulation. In Numerical Simulation of Heat Exchangers, W. J. Minkowycz, E. M. Sparrow, J. P. Abraham, and J. M. Gorman, Eds. Boca Raton, FL, USA: CRC Press, 2017, pp. 173–212. Available: https://uconn.illiad.oclc.org/illiad/illiad.dll?Action=10&Form=75&Value=855746.
  • Y. J. Park, H. K. Kang, and C. J. Kim, “Heat transfer characteristics of a two-phase closed thermosyphon to the fill charge ratio,” Int. J. Heat Mass Transf., vol. 45, no. 23, pp. 4655–4661, Mar. 2002. Available:(02)00169-2. DOI: 10.1016/S0017-9310(02)00169-2.
  • C. Harley and A. Faghri, “Complete transient two-dimensional analysis of two-phase closed thermosyphons including the falling condensate film,” J. Heat Transf., vol. 116, no. 2, pp. 418–426, May 1994. DOI: 10.1115/1.2911414.
  • H. Shabgard, B. Xiao, A. Faghri, R. Gupta, and W. Weissman, “Thermal characteristics of a closed thermosyphon under various filling conditions,” Int. J. Heat Mass Transf., vol. 70, pp. 91–102, Mar. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.053.
  • A. Faghri and Y. Zhang, Transport phenomena in multiphase systems. Elsevier Academic Press, 2006. Available: https://www.thermalfluidscentral.org/e-books/book-intro.php?b=42.
  • X. Wang, Y. Wang, H. Chen, and Y. Zhu, “A combined CFD/visualization investigation of heat transfer behaviors during geyser boiling in two-phase closed thermosyphon,” Int. J. Heat Mass Transf., vol. 121, pp. 703–714, Jun. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.005.
  • A. Alizadehdakhel, M. Rahimi, and A. A. Alsairafi, “CFD modeling of flow and heat transfer in a thermosyphon,” Int. Commun. Heat Mass Transf., vol. 37, no. 3, pp. 312–318, Mar. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.09.002.
  • B. Fadhl, L. C. Wrobel, and H. Jouhara, “Numerical modelling of the temperature distribution in a two-phase closed thermosyphon,” Appl. Ther. Eng., vol. 60, no. 1–2, pp. 122–131, Oct. 2013. DOI: 10.1016/j.applthermaleng.2013.06.044.
  • H. Jouhara, B. Fadhl, and L. C. Wrobel, “Three-dimensional CFD simulation of geyser boiling in a two-phase closed thermosyphon,” Int. J. Hydrogen Energy, vol. 41, no. 37, pp. 16463–16476, Oct. 2016. DOI: 10.1016/j.ijhydene.2016.02.038.
  • Z. Xu, Y. Zhang, B. Li, and J. Huang, “Modeling the phase change process for a two-phase closed thermosyphon by considering transient mass transfer time relaxation parameter,” Int. J. Heat Mass Transf., vol. 101, pp. 614–619, Oct. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.075.
  • Y. Naresh and C. Balaji, “Thermal performance of an internally finned two phase closed thermosyphon with refrigerant R134a: a combined experimental and numerical study,” Int. J. Ther. Sci., vol. 126, pp. 281–293, Apr. 2018. DOI: 10.1016/j.ijthermalsci.2017.11.033.
  • L. Zou and W. Wang, “Simulation study of flow and heat transfer in a thermosyphon,” Numer. Heat Transf. B, vol. 72, no. 1, pp. 55–70, Jun. 2017. DOI: 10.1080/10407790.2017.1338098.
  • P. Zhang, B. Wang, W. Shi, L. Han, and X. Li, “Modeling and performance analysis of a two-phase thermosyphon loop with partially/fully liquid-filled downcomer,” Int. J. Refriger., vol. 58, pp. 172–185, Oct. 2015. DOI: 10.1016/j.ijrefrig.2015.06.014.
  • R. Khodabandeh, “Pressure drop in riser and evaporator in an advanced two-phase thermosyphon loop,” Int. J. Refriger., vol. 28, no. 5, pp. 725–734, Aug. 2005. DOI: 10.1016/j.ijrefrig.2004.12.003.
  • S.-W. Kang, M.-C. Tsai, C.-S. Hsieh, and J.-Y. Chen, “Thermal performance of a loop thermosyphon,” Tamkang J. Sci. Eng., vol. 13, no. 3, pp. 281–288, 2010. Available: http://www2.tku.edu.tw/∼tkjse/13-3/07-ME9707.pdf.
  • R. T. Dobson and J. C. Ruppersberg, “Flow and heat transfer in a closed loop thermosyphon. Part I – theoretical simulation,” J. Energy Southern Afr., vol. 18, no. 4, pp. 32–40, Nov. 2017. Available: http://www.erc.uct.ac.za/sites/default/files/image_tool/images/119/jesa/18-4jesa-dobson.pdf.
  • S. H. Park, Y. S. Kim, S. Y. Kim, Y. G. Park, and M. Y. Ha, “Numerical study on the two-phase flow pattern and temperature distribution in a loop thermosyphon as a defrost device at the evaporator in the refrigerator,” J. Mech. Sci. Technol., vol. 32, no. 12, pp. 5927–5936, Dec. 2018. DOI: 10.1007/s12206-018-1144-2.
  • P. Zhang, B. Wang, W. Shi, and X. Li, “Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer,” Appl. Energy, vol. 160, pp. 10–17, Dec. 2015. DOI: 10.1016/j.apenergy.2015.09.033.
  • N. Z. Aung and S. Li, “Numerical investigation on effect of riser diameter and inclination on system parameters in a two-phase closed loop thermosyphon solar water heater,” Energy Conversion Manage., vol. 75, pp. 25–35, Nov. 2013. DOI: 10.1016/j.enconman.2013.06.001.
  • S. Bodjona, E. Videcoq, R. Saurel, A. Chinnayya, A. M. Benselama, and Y. Bertin, “Transient simulation a two-phase loop thermosyphon a model out thermodynamic equilibrium,” Int. J. Heat Mass Transf., vol. 108, pp. 2321–2332, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.061.
  • S. Bodjona, M. Girault, E. Videcoq, and Y. Bertin, “Reduced order model of a two-phase loop thermosyphon by modal identification method,” Int. J. Heat Mass Transf., vol. 123, pp. 637–654, Aug. 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.02.075.
  • D. Lu, X. Zhang, and C. Guo, “Stability analysis for single-phase liquid metal rectangular natural circulation loops,” Ann. Nucl. Energy, vol. 73, pp. 189–199, Nov. 2014. DOI: 10.1016/j.anucene.2014.06.014.
  • M. Maiani, W. J. M. de Kruijf, and W. Ambrosini, “An analytical model for the determination of stability boundaries in a natural circulation single-phase thermosyphon loop,” Int. J. Heat Fluid Flow, vol. 24, no. 6, pp. 853–863, Dec. 2003. DOI: 10.1016/j.ijheatfluidflow.2003.07.002.
  • P. K. Vijayan, “Experimental observations on the general trends of the steady state and stability behaviour of single-phase natural circulation loops,” Nucl. Eng. Des., vol. 215, no. 1–2, pp. 139–152, Jun. 2002. Available:(02)00047-X. DOI: 10.1016/S0029-5493(02)00047-X.
  • E. A. Burroughs, E. A. Coutsias, and L. A. Romero, “A reduced-order partial differential equation model for the flow in a thermosyphon,” J. Fluid Mech., vol. 543, no. 1, pp. 203–237, Nov. 2005. DOI: 10.1017/S0022112005006361.
  • D. S. Pilkhwal, W. Ambrosini, N. Forgione, P. K. Vijayan, D. Saha, and J. C. Ferreri, “Analysis of the unstable behaviour of a single-phase natural circulation loop with one-dimensional and computational fluid-dynamic models,” Ann. Nucl. Energy, vol. 34, no. 5, pp. 339–355, May. 2007. DOI: 10.1016/j.anucene.2007.01.012.
  • K. Naveen, K. N. Iyer, J. B. Doshi, and P. K. Vijayan, “Investigations on single-phase natural circulation loop dynamics. Part 3: role of expansion tank,” Prog. Nucl. Energy, vol. 78, pp. 65–79, 2015. DOI: 10.1016/j.pnucene.2014.08.007.
  • M. M. Farawila, D. R. Todd, M. J. Ades José, and N. N. Reyes, “Analytical stability analogue for a single-phase natural-circulation loop,” Nucl. Sci. Eng., vol. 184, no. 3, pp. 321–333, Nov. 2016. DOI: 10.13182/NSE16-24.
  • L. Luzzi et al., “Assessment of analytical and numerical models on experimental data for the study of single-phase natural circulation dynamics in a vertical loop,” Chem. Eng. Sci., vol. 162, pp. 262–283, Apr. 2017. DOI: 10.1016/j.ces.2016.12.058.
  • H. Cheng, H. Lei, and C. Dai, “Thermo-hydraulic characteristics and second-law analysis of a single-phase natural circulation loop with end heat exchangers,” Int. J. Ther. Sci., vol. 129, pp. 375–384, Jul. 2018. DOI: 10.1016/j.ijthermalsci.2018.03.026.
  • R. B. Bejjam and K. Kiran Kumar, “Numerical investigation to study the effect of loop inclination angle on thermal performance of nanofluid-based single-phase natural circulation loop,” Int. J. Ambient Energy Int., vol. 40, pp. 885–893, Mar. 2018. DOI: 10.1080/01430750.2018.1432502.
  • S. Kloczko, A. Faghri, and Y. Li, “Is a non-phase change heat pipe a new heat pipe?” Int. J. Heat Mass Transf., vol. 145, pp. 118676, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118676.
  • Volume of Fluid (VOF) Model Theory. Release 12.0 © ANSYS, Inc. Jan. 2009. Available: https://www.sharcnet.ca/Software/Fluent6/html/ug/node880.htm. Accessed January 28, 2018.
  • F. Dong, Z. Wang, T. Cao, and J. Ni, “A novel interphase mass transfer model toward the VOF simulation of subcooled flow boiling,” Numer. Heat Transf. A., vol. 76, no. 4, pp. 220–231, Mar. 2019. DOI: 10.1080/10407782.2019.1627838.
  • Thermophysical Properties of Fluid Systems, National Institute of Standards and Technology, 2017. Available: http://webbook.nist.gov/chemistry/fluid/. Accessed January 4, 2018.
  • W. H. Lee, “A pressure iteration scheme for two-phase flow modeling,” Multiphase Transport Fundamentals, Reactor Safety, Applications, vol. 1, pp. 407–431, 1980. Available: http://www.newsmth.net/bbsanc.php?path=%2Fgroups%2Fsci.faq%2FMechanics%2FNews%2FNetF%2Fsolid%2FM.1284776945.E0&ap=173276.
  • D. Sun, J. Xu, and Q. Chen, “Modeling of the evaporation and condensation phase-change problems with fluent,” Numer. Heat Transf. B, vol. 66, no. 4, pp. 326–342, Jan. 2014. DOI: 10.1080/10407790.2014.915681.
  • Y. Kim, J. Choi, S. Kim, and Y. Zhang, “Effects of mass transfer time relaxation parameters on condensation in a thermosyphon,” J. Mech. Sci. Technol., vol. 29, no. 12, pp. 5497–5505, Dec. 2015. DOI: 10.1007/s12206-015-1151-5.
  • J.U. Brackbill, D.B. Kothe, and D.B. Kothe, “A continuum method for modeling surface tension. J. Comput. Phys., vol. 100, no. 2, pp. 335–354, Jul. 1992. Available:(92)90240-Y. DOI: 10.1016/0021-9991(92)90240-Y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.