Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 8
275
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Real-time temperature estimation with enhanced spatial resolution during MR-guided hyperthermia therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 782-806 | Received 02 Sep 2019, Accepted 17 Jan 2020, Published online: 04 Feb 2020

References

  • K. Hynynen, W. R. Freund, H. E. Cline, A. H. Chung, R. D. Watkins, J. P. Vetro, and F. A. Jolesz, “A clinical, noninvasive, MR imaging-monitored ultrasound surgery method,” RadioGraphics., vol. 16, no. 1, pp. 185–195, Jan. 1996. DOI: 10.1148/radiographics.16.1.185.
  • V. Rieke and K. Butts Pauly, “MR thermometry,” J. Magn. Reson. Imaging, vol. 27, no. 2, pp. 376–390, Feb. 2008. DOI: 10.1002/jmri.21265.
  • B. R. Loiola, H. R. B. Orlande, and G. S. Dulikravich, “Thermal damage during ablation of biological tissues,” Numer. Heat Transf. Part A Appl., vol. 73, no. 10, pp. 685–701, 2018. DOI: 10.1080/10407782.2018.1464794.
  • Y. Bayazitoglu, “Nanoshell-assisted cancer thermal therapy: numerical simulations,” presented at the Proc 2nd ASME Micro/Nanoscale Heat & Mass Transfer: An International Conference, Shanghai, 2009.
  • Y. Bayazitoglu, S. Kheradmand, and T. K. Tullius, “An overview of nanoparticle assisted laser therapy,” Int. J. Heat Mass Transf., vol. 67, pp. 469–486, Dec. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.018.
  • L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transf., vol. 54, no. 25-26, pp. 5459–5469, Dec. 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.045.
  • L. A. Dombrovsky, V. Timchenko, C. Pathak, H. Piazena, W. Müller, and M. Jackson, “Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: a computational modeling,” Int. J. Heat Mass Transf., vol. 85, pp. 311–320, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.01.133.
  • B. Denis de Senneville, B. Quesson, and C. T. W. Moonen, “Magnetic resonance temperature imaging,” Int. J. Hyperthermia, vol. 21, no. 6, pp. 515–531, 2005. DOI: 10.1080/02656730500133785.
  • Y. Ishihara, Y. Ishihara, A. Calderon, H. Watanabe, K. Okamoto, Y. Suzuki, K. Kuroda, and Y. Suzuki, “A precise and fast temperature mapping using water proton chemical shift.,” Magn. Reson. Med., vol. 34, no. 6, pp. 814–823, 1995. DOI: 10.1002/mrm.1910340606.
  • J. P. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems. New York, NY: Springer Science + Business Media, Inc, 2004.
  • H. R. B. Orlande, M. Colaço, G. Dulikravich, F. Vianna, W. da Silva, H. Fonseca, and O. Fudym, “State estimation problems in heat transfer,” Int. J. Uncertain. Quantif., vol. 2, no. 3, pp. 239–258, 2012. DOI: 10.1615/Int.J.UncertaintyQuantification.2012003582.
  • A. Doucet, A. Smith, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
  • M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process, vol. 50, no. 2, pp. 174–188, 2002. DOI: 10.1109/78.978374.
  • C. Pacheco, H. R. B. Orlande, M. J. Colaço, and G. S. Dulikravich, “State estimation problems in PRF-shift magnetic resonance thermometry,” Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 2, pp. 315–335, Jan. 2018. DOI: 10.1108/HFF-10-2016-0427.
  • D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. New Jersey, USA: John Wiley & Sons, Inc., 2006.
  • C. C. Pacheco, H. R. B. Orlande, M. J. Colaço, and G. S. Dulikravich, “Real-time identification of a high-magnitude boundary heat flux on a plate,” Inverse Probl. Sci. Eng., vol. 24, no. 9, pp. 1661–1679, 2016. DOI: 10.1080/17415977.2016.1195829.
  • P. Gas and A. Miaskowski, “Specifying the ferrofluid parameters important from the viewpoint of magnetic fluid hyperthermia,” presented at the 2015 Selected Problems of Electrical Engineering and Electronics (WZEE), Kielce, Poland, 2015, pp. 1–6, DOI: 10.1109/WZEE.2015.7394040.[10.1109/WZEE.2015.7394040]
  • L. A. B. Varon, H. R. B. Orlande, and G. E. Eliçabe, “Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves,” Int. J. Therm. Sci., vol. 98, pp. 228–236, 2015. DOI: 10.1016/j.ijthermalsci.2015.06.022.
  • P. Gas, “Temperature inside tumor as time function in RF hyperthermia,” Przeglad Elektrotechniczny, vol. 86, pp. 42–45, 2010.
  • R. Goyal and K. Vafai, “Electromagnetic field-induced thermal management of biological materials,” Numer. Heat Transf. Part Appl., vol. 72, no. 4, pp. 275–290, Aug. 2017. DOI: 10.1080/10407782.2017.1372672.
  • E. Kurgan and P. Gas, “Analysis of electromagnetic heating in magnetic fluid deep hyperthermia,” presented at the 2016 17th International Conference Computational Problems of Electrical Engineering (CPEE), IEEE Xplore, Sandomierz, Poland, pp. 1–4, Sep. 14–17, 2016. DOI: 10.1109/CPEE.2016.7738756.[10.1109/CPEE.2016.7738756]
  • L. A. B. Varon, H. R. B. Orlande, and G. E. Eliçabe, “Combined parameter and state estimation problem in a complex domain: Rf hyperthermia treatment using nanoparticles,” J. Phys. Conf. Series (Print), vol. 745, pp. 032014, 2016. DOI: 10.1088/1742-6596/745/3/032014.
  • B. Lamien, H. R. B. Orlande, and G. E. Eliçabe, “Inverse problem in the hyperthermia therapy of cancer with laser heating and plasmonic nanoparticles,” Inverse Probl. Sci. Eng., vol. 25, no. 4, pp. 608–631, May 2016. DOI: 10.1080/17415977.2016.1178260.
  • N. Afrin and Y. Zhang, “Uncertainty analysis of thermal damage to living biological tissues by laser irradiation based on a generalized duel-phase lag model,” Numer. Heat Transf. Part A Appl., vol. 71, no. 7, pp. 693–706, Apr. 2017. DOI: 10.1080/10407782.2017.1308714.
  • H. Nirgudkar, S. Kumar, and A. Srivastava, “Thermal analysis of laser-irradiated tissue phantoms using a novel separation of the variables-based discrete transfer method,” Numer. Heat Transf. Part A Appl., vol. 71, no. 5, pp. 575–589, Mar. 2017. DOI: 10.1080/10407782.2016.1277925.
  • B. Lamien, H. R. B. Orlande, L. A. B. Varon, R. L. Q. Basto, G. E. Elicabe, D. S. dos Santos, and R. M. Cotta, “Estimation of the temperature field in laser-induced hyperthermia experiments with a phantom,” Int. J. Hyperthermia, vol. 35, no. 1, pp. 279–290, 2018. DOI: 10.1080/02656736.2018.1496283.
  • W. G. Schneider, H. J. Bernstein, and J. A. Pople, “Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules,” J. Chem. Phys., vol. 28, no. 4, pp. 601–601, 1958. DOI: 10.1063/1.1744199.
  • D. L. Parker, V. Smith, P. Sheldon, L. E. Crooks, and L. Fussell, “Temperature distribution measurements in two-dimensional NMR imaging,” Med. Phys., vol. 10, no. 3, pp. 321–321, 1983. DOI: 10.1118/1.595307.
  • D. L. Bihan, J. Delannoy, and R. L. Levin, “Temperature mapping with MR imaging of molecular diffusion: Application to hyperthermia,” Radiology, vol. 171, no. 3, pp. 853–857, Jun. 1989. DOI: 10.1148/radiology.171.3.2717764.
  • J. A. De Zwart, P. Van Gelderen, D. J. Kelly, and C. T. Moonen, “Fast magnetic-resonance temperature imaging,” J. Magn. Reson., vol. 112, no. 1, pp. 86–90, 1996. DOI: 10.1006/jmrb.1996.0115.
  • D. J. Griffiths, Introduction to Electrodynamics. New Jersey, USA: Prentice Hall, 1999.
  • R. W. Brown, Y. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design. New Jersey, USA: Wiley, 1999.
  • V. Kuperman, Magnetic Resonance Imaging: Physical Principles and Applications. San Diego, CA: Elsevier Science, 2000.
  • H. H. Pennes, “Analysis of tissue and arterial blood temperatures in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, Aug. 1948. DOI: 10.1152/jappl.1948.1.2.93.
  • M. J. Ackerman, “The Visible Human Project,” Proc. IEEE, vol. 86, no. 3, pp. 504–511, 1998. DOI: 10.1109/5.662875.
  • V. M. Spitzer and D. G. Whitlock, “The visible human dataset: the anatomical platform for human simulation,” Anat. Rec., vol. 253, no. 2, pp. 49–57, 1998. DOI: 10.1002/(SICI)1097-0185(199804)253:2<49::AID-AR8>3.0.CO;2-9.
  • C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Methods Eng., vol. 79, no. 11, pp. 1309–1331, Sep. 2009. DOI: 10.1002/nme.2579.
  • H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Harlow, Essex, UK: Longman Group Ltd, 1995.
  • S. R. Mathur and J. Y. Murthy, “A pressure-based method for unstructured meshes,” Numer. Heat Transf. Part B Fundam., vol. 31, no. 2, pp. 195–215, 1997. DOI: 10.1080/10407799708915105.
  • L. A. B. Varon, H. R. B. Orlande, and G. E. Eliçabe, “Combined parameter and state estimation in the radio frequency hyperthermia treatment of cancer,” Numer. Heat Transf. Part A Appl., vol. 70, no. 6, pp. 581–594, 2016. Sep. DOI: 10.1080/10407782.2016.1193342.
  • B. Lamien, L. A. B. Varon, H. R. B. Orlande, and G. E. Eliçabe, “State estimation in bioheat transfer: a comparison of particle filter algorithms,” Int. J. Numer. Methods Heat Fluid Flow, vol. 27, no. 3, pp. 615–638, 2016.
  • P. Benner, V. Mehrmann, V. Sima, S. Van Huffel, and A. Varga, “SLICOT-A subroutine library in systems and control theory,” in Applied and Computational Control, Signals, and Circuits SE - 10, B. Datta, Ed. Boston: Birkhäuser, 1999, pp. 499–539.
  • Z.-S. Deng and J. Liu, “Monte Carlo method to solve multidimensional bioheat transfer problem,” Numer. Heat Transf. Part B Fundam., vol. 42, no. 6, pp. 543–567, 2002. DOI: 10.1080/10407790260444813.
  • Z.-S. Deng and J. Liu, “Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,” Comput. Biol. Med., vol. 34, no. 6, pp. 495–521, 2004. DOI: 10.1016/S0010-4825(03)00086-6.
  • Y.-G. Lv, Z.-S. Deng, and J. Liu, “3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field,” IEEE Trans. Nanobiosci., vol. 4, no. 4, pp. 284–294, 2005. DOI: 10.1109/TNB.2005.859549.
  • E. Majchrzak and M. Paruch, “Numerical modelling of the cancer destruction during hyperthermia treatment,” presented at the 19th International Conference on Computer Methods in Mechanics CMM-2011, Warsaw, Poland, Short Papers, 2001, pp. 333–334.
  • P. A. Hasgall, “IT’IS database for thermal and electromagnetic parameters of biological tissues, [online]” 2015. Available from: https://itis.swiss/virtual-population/tissue-properties/database. [Accessed January 15, 2018].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.