Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 9
225
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Transient heat transfer in fibrous multi-scale composites: A semi-analytical model and its numerical validation

, &
Pages 840-852 | Received 18 Feb 2020, Accepted 19 Mar 2020, Published online: 02 Apr 2020

References

  • J. Maxwell, Conduction through heterogeneous media, Chapter IX–A Treatise on Electricity and Magnetisma, 1873.
  • R. Davis, “The effective thermal conductivity of a composite material with spherical inclusions,” Int. J. Thermophys, vol. 7, no. 3, pp. 609–620, 1986. DOI: 10.1007/BF00502394.
  • D. J. Jeffrey, “Conduction through a random suspension of spheres, proceedings of the royal society of London,” A. Math. Phys. Sci., vol. 335, no. 1602, pp. 355–367, 1973.
  • G. K. Batchelor and R. O’brien, “Thermal or electrical conduction through a granular material,” Proc. Roy. Soc. London. A. Math. Phys. Sci., vol. 355, no. 1682, pp. 313–333, 1977.
  • D. Hasselman and L. F. Johnson, “Effective thermal conductivity of composites with interfacial thermal barrier resistance,” J. Compos. Mater., vol. 21, no. 6, pp. 508–515, 1987. DOI: 10.1177/002199838702100602.
  • C.-W. Nan, R. Birringer, D. R. Clarke and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance,” J. Appl. Phys., vol. 81, no. 10, pp. 6692–6699, 1997. DOI: 10.1063/1.365209.
  • M. Karkri, L. Ibos and B. Garnier, “Comparison of experimental and simulated effective thermal conductivity of polymer matrix filled with metallic spheres: Thermal contact resistance and particle size effect,” J. Compos. Mater., vol. 49, no. 24, pp. 3017–3030, 2015. DOI: 10.1177/0021998314559062.
  • Y. Xu and K. Yagi, “Calculation of the thermal conductivity of randomly dispersed composites using a finite element modeling method,” Mater. Trans., vol. 45, no. 8, pp. 2602–2605, 2004. DOI: 10.2320/matertrans.45.2602.
  • S. Lee, J. Lee, B. Ryu and S. Ryu, “A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018. DOI: 10.1038/s41598-018-25379-8.
  • S. Zhai, P. Zhang, Y. Xian, J. Zeng and B. Shi, “Effective thermal conductivity of polymer composites: Theoretical models and simulation models,” Int. J. Heat Mass. Transfer, vol. 117, pp. 358–374, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.067.
  • C. Wong and R. S. Bollampally, “Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging,” J. Appl. Polym. Sci., vol. 74, no. 14, pp. 3396–3403, 1999. DOI: 10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3.
  • T. Qian, J. Li, X. Min, W. Guan, Y. Deng and L. Ning, “Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage,” J. Mater. Chem. A, vol. 3, no. 16, pp. 8526–8536, 2015. DOI: 10.1039/C5TA00309A.
  • C. B. Kim, N.-H. You and M. Goh, “Hollow polymer microcapsule embedded transparent and heat-insulating film,” RSC Adv., vol. 8, no. 17, pp. 9480–9486, 2018. DOI: 10.1039/C8RA00801A.
  • C. Liu, J. S. Kim and Y. Kwon, “Comparative investigation on thermal insulation of polyurethane composites filled with silica aerogel and hollow silica microsphere,” J Nanosci Nanotechnol., vol. 16, no. 2, pp. 1703–1707, 2016. DOI: 10.1166/jnn.2016.11985.
  • D. Mishra and A. Satapathy, “An experimental investigation on the effect of particle size on the thermal properties and void content of solid glass microsphere filled epoxy composites,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 115, pp. 012011, 2016. DOI: 10.1088/1757-899X/115/1/012011.
  • M. Quintard, “Heat transfer in composite materials and porous media: Multiple-scale aspects and effective properties,” In Heat Transfer in Polymer Composite Materials: Forming Processes, N. Boyard, Ed. New York: John Wiley & Sons, 2016, pp. 175–201. DOI: 10.1002/9781119116288.ch6.
  • G. C. Glatzmaier and W. F. Ramirez, “Use of volume averaging for the modeling of thermal properties of porous materials,” Chem. Eng. Sci., vol. 43, no. 12, pp. 3157–3169, 1988. DOI: 10.1016/0009-2509(88)85125-X.
  • H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. Oxford: Clarendon Press, 1959.
  • C. Longmiao, Q. Linfang and X. Yadong, “Numerical simulation of transient thermal response of composite material barrel during gun firing,” presented at the 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, IEEE, pp. 633–637, 2008.
  • T. Fiedler, I. Belova, A. Öchsner and G. Murch, “Non-linear calculations of transient thermal conduction in composite materials,” Computational Materials sci., vol. 45, no. 2, pp. 434–438, 2009. DOI: 10.1016/j.commatsci.2008.10.021.
  • R. Bahadori, H. Gutierrez, S. Manikonda and R. Meinke, “Two-dimensional transient heat conduction in multi-layered composite media with temperature dependent thermal diffusivity using floating random walk Monte-Carlo method,” Int. J. Heat Mass. Transfer, vol. 115, pp. 570–580, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.071.
  • H. R. Norouzi, R. Zarghami, R. Sotudeh-Gharebagh and N. Mostoufi, Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows, Chichester, West Sussex, UK: John Wiley & Sons, 2016.
  • A. Sengar, J. Kuipers, R. van Santen and J. Padding, “Towards a particle based approach for multiscale modeling of heterogeneous catalytic reactors,” Chemical Engineering Sci., vol. 198, pp. 184–197, 2019. DOI: 10.1016/j.ces.2018.10.038.
  • O. Olafadehan, D. Aribike and A. Adeyemo, “Mathematical modeling and simulation of steady state plug flow for lactose-lactase hydrolysis in fixed bed,” Theor. Found Chem. Eng., vol. 43, no. 1, pp. 58–69, 2009. DOI: 10.1134/S0040579509010084.
  • H. M. Roder, “A transient hot wire thermal conductivity apparatus for fluids,” J. Res. Natl. Bur. Stan., vol. 86, no. 5, pp. 457–493, 1981. DOI: 10.6028/jres.086.020.
  • M. J. Assael, et al., “A novel portable absolute transient hot-wire instrument for the measurement of the thermal conductivity of solids,” Int. J. Thermophys., vol. 36, no. 10-11, pp. 3083–3105, 2015. DOI: 10.1007/s10765-015-1964-6.
  • M. Quintard and S. Whitaker, “One-and two-equation models for transient diffusion processes in two-phase systems,” in Advances in Heat Transfer, Vol. 23, J. P. Hartnett and T. F. Irvine Jr, Eds. Boston: Elsevier, 1993, pp. 369–464. DOI: 10.1016/S0065-2717(08)70009-1.
  • C. Geuzaine and J.-F. Remacle, “Gmsh: A three-dimensional finite element mesh generator with built-in pre-and post-processing facilities,” in Proceedings of the Second Workshop on Grid Generation for Numerical Computations, Tetrahedron II, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.