Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 12
382
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical investigation of the melting process of aluminum foam/paraffin composite with low porosity

, , , &
Pages 998-1013 | Received 04 Sep 2019, Accepted 19 Mar 2020, Published online: 07 Apr 2020

References

  • B. S. Yilbas, S. Z. Shuja, and M. M. Shaukat, “Thermal characteristics of latent heat thermal storage: comparison of aluminum foam and mesh configurations,” Numer. Heat Transfer, A: Appl., vol. 68, no. 1, pp. 99–116, 2015. DOI: 10.1080/10407782.2014.977116.
  • P. Tatsidjodoung, N. L. Pierres, and L. G. Luo, “A review of potential materials for thermal energy storage in building applications,” Renew. Sust. Energy Rev., vol. 18, pp. 327–349, 2013. vol DOI: 10.1016/j.rser.2012.10.025.
  • D. Chiappini, A. Festuccia, and G. Bella, “Coupled lattice Boltzmann finite volume method for conjugate heat transfer in porous media,” Numer. Heat Transfer, A: Appl., vol. 73, no. 5, pp. 291–306, 2018. DOI: 10.1080/10407782.2018.1444868.
  • D. Dandotiya and N. D. Banker, “Numerical investigation of heat transfer enhancement in a multitube thermal energy storage heat exchanger using fins,” Numer. Heat Transfer, A: Appl., vol. 72, no. 5, pp. 389–400, 2017. DOI: 10.1080/10407782.2017.1376976.
  • L. Fan and J. M. Khodadadi, “Thermal conductivity enhancement of phase change materials for thermal energy storage: a review,” Renew. Sust. Energy Rev., vol. 15, no. 1, pp. 24–46, 2011. DOI: 10.1016/j.rser.2010.08.007.
  • O. Mesalhy, K. Lafdi, A. Elgafy, and K. Bowman, “Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix,” Energy Convers. Manage., vol. 46, no. 6, pp. 847–867, 2005. DOI: 10.1016/j.enconman.2004.06.010.
  • S.-T. Hong and D. R. Herling, “Open-cell aluminum foams filled with phase change materials as compact heat sinks,” Scr. Mater., vol. 55, no. 10, pp. 887–890, 2006. DOI: 10.1016/j.scriptamat.2006.07.050.
  • C. Y. Zhao, W. Lu, and Y. Tian, “Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs),” Sol. Energy, vol. 84, no. 8, pp. 1402–1412, 2010. DOI: 10.1016/j.solener.2010.04.022.
  • C. Y. Zhao, “Review on thermal transport in high porosity cellular metal foams with open cells,” Int. J. Heat Mass Transfer, vol. 55, no. 13-14, pp. 3618–3632, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.03.017.
  • D. T. Queheillalt, D. D. Hass, D. J. Sypeck, and H. N. G. Wadley, “Synthesis of open-cell metal foams by templated directed vapor deposition,” J. Mater. Res., vol. 16, no. 4, pp. 1028–1036, 2001. no DOI: 10.1557/JMR.2001.0143.
  • E. Fleming, S. Wen, L. Shi, and A. K. da Silva, “Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit,” Int. J. Heat Mass Transfer, vol. 82, pp. 273–281, 2015. vol DOI: 10.1016/j.ijheatmasstransfer.2014.11.022.
  • K. Lafdi, O. Mesalhy, and S. Shaikh, “Experimental study on the influence of foam porosity and pore size on the melting of phase change materials,” J. Appl. Phys., vol. 102, no. 8, pp. 083549, 2007. volnopp.083549-1-083549-6 DOI: 10.1063/1.2802183.
  • Y. Tian and C. Y. Zhao, “A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals,” Energy, vol. 36, no. 9, pp. 5539–5546, 2011. DOI: 10.1016/j.energy.2011.07.019.
  • C. San Marchi and A. Mortensen, “Deformation of open-cell aluminum foam,” Acta Mater., vol. 49, no. 19, pp. 3959–3969, 2001. DOI: 10.1016/S1359-6454(01)00294-4.
  • Y. Su and G. Xiaolu, “Porosity predication with microstructural method for open cell aluminum foam,” Spec. Top. Rev. Porous Media, vol. 2, no. 1, pp. 65–72, 2011. DOI: 10.1615/SpecialTopicsRevPorousMedia.v2.i1.70.
  • B. V. S. Dinesh and A. Bhattacharya, “Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems,” Int. J. Heat Mass Transfer, vol. 134, pp. 866–883, 2019. vol DOI: 10.1016/j.ijheatmasstransfer.2019.01.095.
  • V. Joshi and M. K. Rathod, “Constructal enhancement of thermal transport in metal foam-PCM composite-assisted latent heat thermal energy storage system,” Numer. Heat Transfer, A: Appl., vol. 75, no. 6, pp. 413–433, 2019. DOI: 10.1080/10407782.2019.1599270.
  • J. J. Hwang, G. J. Hwang, R. H. Yeh, and C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” J. Heat Transfer, vol. 124, no. 1, pp. 120–129, 2002. DOI: 10.1115/1.1416690.
  • Q. Ren, F. Meng and P. Guo, “A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale,” Int. J. Heat Mass Transfer, vol. 121, pp. 1214–1228, 2018. vol DOI: 10.1016/j.ijheatmasstransfer.2018.01.046.
  • X. L. Gong, L. Yong, S. He, and J. Lu, “Manufacturing and low-velocity impact response of a new composite material: Metal porous polymer composite (MPPC),” J. Mater. Sci. Technol., vol. 20, no. 1, pp. 65–68, 2004. volno
  • S. K. N. Ukrainczyk and J. Šipušiae, “Thermophysical comparison of five commercial paraffin waxes as latent heat storage materials,” Chem. Biochem. Eng. Q, vol. 24, no. 2, pp. 129–137, 2010. URI: https://hrcak.srce.hr/55015.
  • P. M. Kamath, C. Balaji, and S. P. Venkateshan, “Convection heat transfer from aluminium and copper foams in a vertical channel – an experimental study,” Int. J. Thermal Sci., vol. 64, pp. 1–10, 2013. DOI: 10.1016/j.ijthermalsci.2012.08.015.
  • M. Moeini Sedeh and J. M. Khodadadi, “Interface behavior and void formation during infiltration of liquids into porous structures,” Int. J. Multiphase Flow, vol. 57, pp. 49–65, 2013. DOI: 10.1016/j.ijmultiphaseflow.2013.07.002.
  • M. Moeini Sedeh and J. M. Khodadadi, “Solidification of phase change materials infiltrated in porous media in presence of voids,” J. Heat Transfer, vol. 136, pp. 112603, 2014. DOI: 10.1115/1.4028354.
  • W. Q. Li, Z. G. Qu, B. L. Zhang, K. Zhao, and W. Q. Tao, “Thermal behavior of porous stainless-steel fiber felt saturated with phase change material,” Energy, vol. 55, pp. 846–852, 2013. vol DOI: 10.1016/j.energy.2013.02.064.
  • Z.-X. Gong and A. S. Mujumdar, “Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below,” Int. J. Heat Mass Transfer, vol. 41, no. 17, pp. 2573–2580, 1998. DOI: 10.1016/S0017-9310(97)00374-8.
  • Z. Chen, D. Gao, and J. Shi, “Experimental and numerical study on melting of phase change materials in metal foams at pore scale,” Int. J. Heat Mass Transfer, vol. 72, pp. 646–655, 2014. vol DOI: 10.1016/j.ijheatmasstransfer.2014.01.003.
  • W. Q. Li, Z. G. Qu, Y. L. He, and W. Q. Tao, “Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin,” Appl. Therm. Eng., vol. 37, pp. 1–9, 2012. vol DOI: 10.1016/j.applthermaleng.2011.11.001.
  • M. Hussain and W.-Q. Tao, “Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method,” Numer. Heat Transfer,A: Appl., vol. 74, no. 6, pp. 1285–1300, 2018. DOI: 10.1080/10407782.2018.1523599.
  • C. Beckermann and R. Viskanta, “Natural convection solid/liquid phase change in porous media,” Int. J. Heat Mass Transfer, vol. 31, no. 1, pp. 35–46, 1988. DOI: 10.1016/0017-9310(88)90220-7.
  • B. Kamkari, H. Shokouhmand, and F. Bruno, “Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure,” Int. J. Heat Mass Transfer, vol. 72, pp. 186–200, 2014. vol DOI: 10.1016/j.ijheatmasstransfer.2014.01.014.
  • G. Wang, G. Wei, C. Xu, X. Ju, Y. Yang, and X. Du, “Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals,” Appl. Therm. Eng., vol. 147, pp. 464–472, 2019. vol DOI: 10.1016/j.applthermaleng.2018.10.106.
  • M. Augspurger and H. S. Udaykumar, “A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device,” Numer. Heat Transfer, B: Fundam., vol. 69, no. 3, pp. 179–196, 2016. no DOI: 10.1080/10407790.2015.1097106.
  • S. Feng, M. Shi, Y. Li, and T. J. Lu, “Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam,” Int. J. Heat Mass Transfer, vol. 90, pp. 838–847, 2015. vol DOI: 10.1016/j.ijheatmasstransfer.2015.06.088.
  • H. J. Xu, Z. G. Qu, and W. Q. Tao, “Thermal transport analysis in parallel-plate channel filled with open-celled metallic foams,” Int. Commun. Heat Mass, vol. 38, no. 7, pp. 868–873, 2011. DOI: 10.1016/j.icheatmasstransfer.2011.04.015.
  • Y. Yao, H. Wu, and Z. Liu, “Pore scale investigation of heat conduction of high porosity open-cell metal foam/paraffin composite,” J. Heat Transfer, vol. 139, no. 92017. pp. 091302, 2017. DOI: 10.1115/1.4036526.
  • C. Zhang, F. Zhu, H. Badreddine, and X. Gong, “A modified Kelvin model for thermal performance simulation of high mechanical property open-cell metal Foams,” MSCE, vol. 03, no. 07, pp. 113–118, 2015. vol DOI: 10.4236/msce.2015.37015.
  • K. Boomsma and D. Poulikakos, “On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam,” Int. J. Heat Mass Transfer, vol. 44, no. 4, pp. 827–836, 2001. DOI: 10.1016/S0017-9310(00)00123-X.
  • Y. Yao, H. Wu, and Z. Liu, “A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams,” Int. J. Thermal Sci., vol. 97, pp. 56–67, 2015. vol DOI: 10.1016/j.ijthermalsci.2015.06.008.
  • J. Song and S. He, “The heat transfer perfomance of porous aluminum foam,” Jiangsu Metal, vol. 36, pp. 28–30, 2008. vol http://www.cqvip.com/qk/95422x/200802/27218646.html.
  • J. W. Paek, B. H. Kang, S. Y. Kim, and J. M. Hyun, “Effective thermal conductivity and permeability of aluminum foam materials,” Int. J. Thermophys., vol. 21, no. 2, pp. 453–464, 2000. DOI: 10.1023/A:1006643815323.
  • E. Solórzano, J. Reglero, M. Rodríguez-Pérez, D. Lehmhus, M. Wichmann, and J. D. Saja, “An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method,” Int. J. Heat Mass Transfer, vol. 51, no. 25/26, pp. 6259–6267, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.11.062.
  • A. J. Fuller, T. Kim, H. P. Hodson, and T. J. Lu, “Measurement and interpretation of the heat transfer coefficients of metal foams,” Proc. Instit. Mech. Eng., C: J. Mech. Eng. Sci., vol. 219, no. 2, pp. 183–191, 2005. DOI: 10.1243/095440605X8414.
  • P. Ranut, E. Nobile, and L. Mancini, “High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams,” Appl. Therm Eng., vol. 69, no. 1/2, pp. 230–240, 2014. DOI: 10.1016/j.applthermaleng.2013.11.056.
  • Y. Yao, H. Wu, and Z. Liu, “Direct simulation of interstitial heat transfer coefficient between paraffin and high porosity open-cell metal foam,” J. Heat Transfer, vol. 140, no. 3, pp. 032601–032611, 2017. DOI: 10.1115/1.4038006.
  • F. Kuwahara, M. Shirota, and A. Nakayama, “A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media,” Int. J. Heat Mass Transfer, vol. 44, no. 6, pp. 1153–1159, 2001. DOI: 10.1016/S0017-9310(00)00166-6.
  • J. F. Despois and A. Mortensen, “Permeability of open-pore microcellular materials,” Acta Mater., vol. 53, no. 5, pp. 1381–1388, 2005. DOI: 10.1016/j.actamat.2004.11.031.
  • P. S. Liu, “A new method for calculating the specific surface area of porous metal foams,” Philos. Mag. Lett., vol. 90, no. 6, pp. 447–453, 2010. DOI: 10.1080/09500831003745571.
  • Z. Liu, Y. Yao, and H. Wu, “Numerical modeling for solid-liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage,” Appl. Energy, vol. 112, pp. 1222–1232, 2013. DOI: 10.1016/j.apenergy.2013.02.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.