Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 3
134
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical simulation of the resistance braze welded assembly of a copper Inconel 601 ground electrode and a steel shell

, , , &
Pages 73-93 | Received 20 Mar 2020, Accepted 29 May 2020, Published online: 25 Jun 2020

References

  • S. Javant, S. V. Hosseini, and S. S. Alaviyoun, “An experimental investigation of spark plug temperature in bi-fuel engine and its effect on electrode erosion,” Int. J. Automotive Eng., vol. 2, no. 1, pp. 21–29, 2012.
  • H. Buscail, S. Perrier, and C. Josse, “Oxidation mechanism of the Inconel 601 alloy at high temperatures,” Mater. Corros., vol. 62, no. 5, pp. 416–422, 2011. DOI: 10.1002/maco.200905519.
  • Lamineries Matthey, A unit of NOTZ METAL SA, Montagu 38, Case postale CH-2520, LA NEUVEVILLE. Available: https://www.matthey.ch/en/alliages/cuivre/.
  • Normalisation Française, AFNOR NF, NF A 35-053, 1984, Siège social 11, rue Francis de Pressensé 93571 La Plaine Saint-Denis Cedex FRANCE. Available: https://www.boutique.afnor.org/norme/nf-a35-053/fil-machine-en-acier-non-allie-pour-fabrications-realisees-par-formage-a-chaud-ou-a-froid-qualites/article/678153/fa031365
  • É. Feulvarch, P. Rogeon, P. Carré, G. Sibilia, and J.-M. Bergheau, “Modélisation du soudage par point: définition des conditions interfaciales et validation expérimentale,” Mécanique Ind., vol. 7, no. 3, pp. 251–263, 2006. DOI: 10.1051/meca:2006039.
  • E. Feulvarch and J. M. Bergheau, “Resistance spot welding process: Experimental and numerical modeling of the weld growth mechanisms with consideration of contact conditions,” Numer. Heat Transfer Part A: Appl., vol. 49, no. 4, pp. 345–367, 2006. DOI: 10.1080/10407780500359760.
  • P. Rogeon, R. Raoelison, P. Carre, and F. Dechalotte, “A microscopic approach to determine electrothermal contact conditions during resistance spot welding process,” J. Heat Transfer, vol. 131, no. 2, pp. 022101, 2009. DOI: 10.1115/1.3000596.
  • C. Srikunwong, Modélisation du procédé de soudage par points. Mécanique [physics.medph]. Français: École Nationale Supérieure des Mines de Paris, 2005.
  • K. T. Chaouch and P. Rogeon, “Development of weld nugget in dissymmetric assemblies,” presented at the 21st French Congress of Mechanics, Bordeaux Aug. 26–30, 2013.
  • J. A. Greenwood, “Temperatures in Resistance Spot Welding,” Br. Welding J., vol. 8, no. 6, pp. 316–322, 1967.
  • W. Rice and E. J. Funk, “An analytic investigation of the temperature distributions during resistance welding,” Welding J., vol. 57, no. 7, pp. 211s–216s, 1967.
  • J. G. Kaiser, G. J. Dunn, and T. W. Eagar, “The effect of electrical resistance on nugget formation during spot welding,” Welding J., vol. 61, no. 6, pp. 167s–174s, 1982.
  • H. A. Nied, “The finite element modelling of the resistance spot welding process,” Welding J., vol. 63, no. 4, pp. 123s–1132s, 1984.
  • D. W. Dickinson, C. L. Tsai, and O. Jammal, “Modelling of RSW nugget growth application for the automotive industry,” International Congress and Exposition, Detroit, MI, 1990.
  • E. Thieblemont, P. Conraux, J.-M. Bergheau, P. Gobez, and J. C. Chevrier, “Couplage électro-thermique - Application au soudage par résistance par point,” Actes Strucome Paris, pp. 143–156, 1991.
  • C. L. Tsai, W. L. Dai, D. W. Dickinson, and J. C. Papritan, “Analysis and development of a Real time control methodology in resistance spot welding,” Welding J., pp. 339s–357s, 1991.
  • M. M. Vogler and S. D. Sheppard, “A study of temperature histories in resistance spot welding, international trend in welding science and technology,” Proceedings of the 3rd International conference on Trends in Welding Research, Gatlinburg, TN: ASM, June 1–5, 1992, pp. 57–61.
  • L. Xu and J. A. Khan, “Finite element modelling of axisymmetric nugget development during resistance spot welding,” Trends Welding Research: Proceedings of the 5th International conference, Pine Mountain Georgia, USA, June 1-5 1998, pp. 616–621, ASM international.
  • Special Metals, 3200 Riverside Drive Huntington, WV 25705-1771. Available: www.specialmetals.com/tech-center/alloys.
  • SYSWELD™, User's Manual, ESI Group, France, 2019.
  • C. Chaboudez, S. Clain, R. Glardon, D. Mari, J. Rappaz, and M. Swierkosz, “Numerical modelling in induction heating for axisymmetric geometries,” IEEE Trans. Magn., vol. 33, no. 1, pp. 739–745, 1997. DOI: 10.1109/20.560107.
  • G. Meunier, éd. The Finite Element Method for Electromagnetic Modeling, London: Hoboken, NJ: ISTE; Wiley, 2008.
  • J. M. Bergheau and R. Fortunier, Finite Element Simulation of Heat Transfer, London: Hoboken, NJ: ISTE-Wiley, 2008, pp. 279, ISBN 978-1-84821-053-0.
  • J. F. Imhoff, “Modélisation magnétique et mécanique des machines électriques par la méthode des éléments finis,” Thèse INPG Grenoble, France, 1989.
  • J. Fetzer, S. Kurz, and G. Lehner, “The coupling of boundary elements and finite elements for non destructive testing applications,” IEEE Trans. Magn., vol. 33, no. N°1, pp. 677–681, 1997. DOI: 10.1109/20.560096.
  • J.-M. Bergheau and F. Potier, “Finite element modeling of coupled radiative and diffusive heat transfers in non participating media including symmetry and periodicity conditions,” Numer. Heat Transfer, Part B: Fundam., vol. 40, no. 3, pp. 229–247, 2001. DOI: 10.1080/104077901752379639.
  • R. Pascal, P. Conraux, and J. M. Bergheau, “Coupling between finite elements and boundary elements for the numerical simulation of induction heating processes using an harmonic balance method,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1535–1538, 2003. DOI: 10.1109/TMAG.2003.810430.
  • J.-M. Bergheau and P. Conraux, “FEM-BEM coupling for the modelling of induction heating processes including moving parts,” J. Shanghai Jiaotong Univers., vol. E-5, no. N° 1, pp. 91–99, 2000.
  • J. M. Bergheau, “Couplages multiphysiques: applications aux procédés de soudage et de chauffage par induction”, Modélisation numérique 2 – défis et perspectives, Traité MIM sous la direction de P. Breitkopf et C. Knopf-Lenoir, Hermes-Lavoisier, UTC, Compiègne, France, 2007, pp. 17–48, ISBN 978-2-7462-1616-7.
  • S. Kurz, J. Fetzer, and G. Lehner, “An improved algorithm for the BEM-FEM-coupling method using domain decomposition,” IEEE Trans. Magn., vol. 31, no. N°3, pp. 1737–1740, 1995. DOI: 10.1109/20.376371.
  • A. Miton, “Magneto-thermal coupling – SIL coupling procedure – Application example,” SYSTUS Int. Internal Rep. LDZW/98, vol. 255, 1998.
  • E. Feulvarch and J. M. Bergheau, “Modelling and numerical simulation of resistance spot welding process,” In Encyclopedia of Thermal Stresses, R. B. Hetnarski, Ed. Springer, New York, 2014, pp. 3112–3123. ISBN 978-94-007-2738-0.
  • D. G. Fink and H. W. Beatty, Eds., Standard Handbook for Electrical Engineers, 11th ed., McGraw Hill, pp. 18–21, 1978.
  • T. W. Eagar, “Resistance spot welding: A fast, inexpensive and deceptively simple process,” Proceedings of the 3rd International conference on Trends in Welding Research: Gatlinburg, Tennesy, USA, Jun. 1–5, 1992, pp 347–351.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.