Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 5
211
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamic and thermophysical effects enabling high-forced convection heat transfer coefficients in supercritical fluids

, &
Pages 199-213 | Received 13 Apr 2020, Accepted 28 May 2020, Published online: 15 Jul 2020

References

  • W. B. Hall, “Heat transfer near the critical point,” in F.I. Thomas, P.H. James (Eds.) Advances in Heat Transfer, vol. 7, pp. 1–86, 1971. DOI: 10.1016/S0065-2717(08)70016-9.
  • B. D. Iverson, T. M. Conboy, J. J. Pasch and A. M. Kruizenga, “Supercritical CO2 Brayton cycles for solar-thermal energy,” Appl. Energy., vol. 111, pp. 957–970, 2013. DOI: 10.1016/j.apenergy.2013.06.020.
  • V. Dostal, M. J. Driscoll and P. Hejzlar, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” Thesis, Department of Nuclear Engineering, MIT, Cambridge, MA, 2003.
  • L. Zhang, E. N. Wang, K. E. Goodson and T. W. Kenny, “Phase change phenomena in silicon microchannels,” Int. J. Heat Mass Transfer., vol. 48, no. 8, pp. 1572–1582, 2005. DOI: 10.1016/j.ijheatmasstransfer.2004.09.048.
  • M. M. Ehsan, Z. Guan and A. Y. Klimenko, “A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications,” Renewable Sustainable Energy Rev., vol. 92, pp. 658–675, 2018. DOI: 10.1016/j.rser.2018.04.106.
  • I. L. Pioro, H. F. Khartabil and R. B. Duffey, “Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey),” Nucl. Eng. Des., vol. 230, no. 1–3, pp. 69–91, 2004. DOI: 10.1016/j.nucengdes.2003.10.010.
  • I. L. Pioro and R. B. Duffey, “Experimental heat transfer in supercritical water flowing inside channels (survey),” Nucl. Eng. Des., vol. 235, no. 22, pp. 2407–2430, 2005. DOI: 10.1016/j.nucengdes.2005.05.034.
  • R. B. Duffey and I. L. Pioro, “Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey),” Nucl. Eng. Des., vol. 235, no. 8, pp. 913–924, 2005. DOI: 10.1016/j.nucengdes.2004.11.011.
  • S. H. Lee and J. R. Howell, “Turbulent developing convective heat transfer in a tube for fluids near the critical point,” Int. J. Heat Mass Transfer., vol. 41, no. 10, pp. 1205–1218, 1998. DOI: 10.1016/S0017-9310(97)00217-2.
  • S. M. Liao and T. S. Zhao, “An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes,” Int. J. Heat Mass Transfer., vol. 45, no. 25, pp. 5025–5034, 2002. DOI: 10.1016/S0017-9310(02)00206-5.
  • G. M. Hobold and A. K. da Silva, “Thermal behavior of supercritical fluids near the critical point,” Numer. Heat Transfer, Part A: Applicat., vol. 69, no. 6, pp. 545–557, 2016. DOI: 10.1080/10407782.2015.1080584.
  • G. A. Adebiyi and W. B. Hall, “Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe,” Int. J. Heat Mass Transfer., vol. 19, no. 7, pp. 715–720, 1976. DOI: 10.1016/0017-9310(76)90123-X.
  • T. H. Kim, J. G. Kwon, M. H. Kim and H. S. Park, “Experimental investigation on validity of buoyancy parameters to heat transfer of CO2 at supercritical pressures in a horizontal tube,” Exp. Therm. Fluid Sci., vol. 92, pp. 222–230, 2018. DOI: 10.1016/j.expthermflusci.2017.11.024.
  • S. H. Lee and J. R. Howell, “Laminar forced convection at zero gravity to water near the critical region,” J. Thermophys. Heat Transfer., vol. 10, no. 3, pp. 504–510, 1996. DOI: 10.2514/3.817.
  • G.M. Hobold, A.K. da Silva, Dimensionless, fluid-independent equations for heat and momentum transfer in supercritical fluids, J. Supercrit. Fluids., 133, no. Part 1, pp. 17–29, 2018. DOI: 10.1016/j.supflu.2017.09.016.
  • J. Y. Yoo, “The turbulent flows of supercritical fluids with heat transfer,” Annu. Rev. Fluid Mech., vol. 45, no. 1, pp. 495–525, 2013. DOI: 10.1146/annurev-fluid-120710-101234.
  • S. H. Lee and J. R. Howell, “Gravitational effects on laminar convection to near-critical water in a vertical tube,” J. Thermophys. Heat Transfer., vol. 10, no. 4, pp. 627–632, 1996. DOI: 10.2514/3.839.
  • J. R. Howell and S. H. Lee, “Convective heat transfer in the entrance region of a vertical tube for water near the thermodynamic critical point,” Int. J. Heat Mass Transfer., vol. 42, no. 7, pp. 1177–1187, 1999. DOI: 10.1016/S0017-9310(98)00263-4.
  • G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 1967.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY, USA: McGraw-Hill Book Company, 1980.
  • G. M. Hobold and A. K. da Silva, “A generalized multifluid optimal pressure for heat exchangers operating with supercritical fluid,” Numer. Heat Transfer, Part A: Applicat., vol. 72, no. 5, pp. 345–354, 2017. DOI: 10.1080/10407782.2017.1376952.
  • Intel®, “Intel® Xeon® Processor E5 v4 product family: thermal mechanical specification and design guide,” Intel Corporation. Document Number: 333812–3004US, 2018.
  • A. Bejan, Convection Heat Transfer, 3rd ed. New York: John Wiley & Sons, 2004.
  • Y. Chen, “Thermodynamic Cycles using Carbon Dioxide as Working Fluid: CO2 Transcritical Power Cycle,” Thesis, Department of Energy Technology, KTH, Stockholm, Sweden, 2011.
  • J. M. Yin, C. W. Bullard and P. S. Hrnjak, “R-744 gas cooler model development and validation,” Int. J. Refrig., vol. 24, no. 7, pp. 692–701, 2001. DOI: 10.1016/S0140-7007(00)00082-7.
  • A. Bejan, Shape and Structure: From Engineering to Nature. Cambridge, UK: Cambridge University Press, 2000,
  • T. Preda, E. Saltanov, I. Pioro and K. S. Gabriel, “Development of a heat transfer correlation for supercritical CO2 based on multiple data sets,” in: 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference, 2012, pp. 211–217. DOI: 10.1115/ICONE20-POWER2012-54516

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.