Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 2
338
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Pool boiling enhancement on biphilic micropillar arrays: Control on the thin film evaporation and rewetting flow

ORCID Icon
Pages 60-72 | Received 19 Apr 2020, Accepted 28 May 2020, Published online: 17 Jun 2020

References

  • M. McCarthy, K. Gerasopoulos, S. C. Maroo, and A. J. Hart, “Materials, fabrication, and manufacturing of micro/nanostructured surfaces for phase-change heat transfer enhancement,” Nanoscale Microscale Thermophys. Eng., vol. 18, no. 3, pp. 288–310, 2014. DOI: 10.1080/15567265.2014.926436.
  • D. E. Kim, D. I. Yu, D. W. Jerng, M. H. Kim, and H. S. Ahn, “Review of boiling heat transfer enhancement on micro/nanostructured surfaces,” Exp. Therm. Fluid Sci., vol. 66, pp. 173–196, 2015. DOI: 10.1016/j.expthermflusci.2015.03.023.
  • S. Mori and Y. Utaka, “Critical heat flux enhancement by surface modification in a saturated pool boiling: A review,” Int. J. Heat Mass Transf., vol. 108, pp. 2534–2557, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.090.
  • C. S. S. Kumar, G. U. Kumar, M. R. M. Arenales, C. C. Hsu, S. Suresh, and P. H. Chen, “Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings,” Appl. Therm. Eng., vol. 137, pp. 868–891, 2018. DOI: 10.1016/j.applthermaleng.2018.03.092.
  • S. Xie, M. S. Beni, J. Cai, and J. Zhao, “Review of critical-heat-flux enhancement methods,” Int. J. Heat Mass Transf., vol. 122, pp. 275–289, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.116.
  • G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transf., vol. 128, pp. 892–933, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.09.026.
  • A. R. Betz, J. Jenkins, C. J. Kim, and D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 733–741, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.10.080.
  • Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Effects of nanowire height on pool boiling performance of water on silicon chips,” Int. J. Therm. Sci., vol. 50, no. 11, pp. 2084–2090, 2011. DOI: 10.1016/j.ijthermalsci.2011.06.009.
  • N. S. Dhillon, J. Buongiorno and K. K. Varanasi, “Critical heat flux maxima during boiling crisis on textured surfaces,” Nat. Commun., vol. 6, pp. 8247, 2015. DOI: 10.1038/ncomms9247.
  • M. M. Rahman, E. ÖLçErog˘Lu, and M. McCarthy, “Role of wickability on the critical heat flux of structured superhydrophilic surfaces,” Langmuir, vol. 30, no. 37, pp. 11225–11234, 2014. DOI: 10.1021/la5030923.
  • H. Azarkish, A. Behzadmehr, T. F. Sheikholeslami, S. M. H. Sarvari, and L. G. Fréchette, “Water evaporation phenomena on micro and nanostructured surfaces,” Int. J. Therm. Sci., vol. 90, pp. 112–121, 2015. DOI: 10.1016/j.ijthermalsci.2014.12.005.
  • T. B. Nguyen et al., “Critical heat flux enhancement in pool boiling through increased rewetting on nanopillar array surfaces,” Sci. Rep., vol. 8, no. 1, pp. 4815, 2018. DOI: 10.1038/s41598-018-22693-z.
  • J. Zhou, B. Liu, B. Qi, J. Wei, and H. Mao, “Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces,” Int. J. Therm. Sci, vol. 135, pp. 133–147, 2019. DOI: 10.1016/j.ijthermalsci.2018.09.013.
  • M. M. Rahman, J. Pollack, and M. McCarthy, “Increasing boiling heat transfer using low conductivity materials,” Sci. Rep., vol. 5, pp. 13145, 2015. DOI: 10.1038/srep13145.
  • M. M. Rahman and M. McCarthy, “Boiling enhancement on nanostructured surfaces with engineered variations in wettability and thermal conductivity,” Heat Transf. Eng., vol. 38, no. 14–15, pp. 1285–1295, 2017. DOI: 10.1080/01457632.2016.1242961.
  • C. H. Choi et al., “Large-scale generation of patterned bubble arrays on printed bi-functional boiling surfaces,” Sci. Rep., vol. 6, pp. 23760, 2016. DOI: 10.1038/srep23760.
  • R. Wen et al., “Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays,” Nano Energy, vol. 38, pp. 59–65, 2017. DOI: 10.1016/j.nanoen.2017.05.028.
  • H. Azarkish, A. Behzadmehr, T. F. Sheikholeslami, S. M. H. Sarvari, and L. G. Fréchette, “A novel silicon bi-textured micropillar array to provide fully evaporated steam for a micro-Rankine cycle application,” J. Phys. D Appl. Phys., vol. 47, no. 47, pp. 475301, 2014. DOI: 10.1088/0022-3727/47/47/475301.
  • X. Wang, Z. Wu, J. Wei, and B. Sundén, “Correlations for prediction of the bubble departure radius on smooth flat surface during nucleate pool boiling,” Int. J. Heat Mass Transf., vol. 132, pp. 699–714, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.029.
  • R. Cole and W. M. Rohsenow, “Correlation of bubble departure diameters for boiling of saturated liquids,” Chem. Eng. Prog. Symp. Ser., vol. 65, pp. 211–213, 1968.
  • R. S. Hale, R. T. Bonnecaze and C. H. Hidrovo, “Optimization of capillary flow through square micropillar arrays,” Int. J. Multiphase Flow, vol. 58, pp. 39–51, 2014. DOI: 10.1016/j.ijmultiphaseflow.2013.08.003.
  • R. Xiao, R. Enright, and E. N. Wang, “Prediction and optimization of liquid propagation in micropillar arrays,” Langmuir, vol. 26, no. 19, pp. 15070–15075, 2010. DOI: 10.1021/la102645u.
  • K. Yazdchi, S. Srivastava and S. Luding, “Microstructural effects on the permeability of periodic fibrous porous media,” Int. J. Multiphase Flow, vol. 37, no. 8, pp. 956–966, 2011. DOI: 10.1016/j.ijmultiphaseflow.2011.05.003.
  • H. Azarkish, A. Behzadmehr and L. G. Frechette, “Modeling the performance of bi-textured micropillar array as a wicked evaporator,” ASME 2016 Heat Transfer Summer Conference, V002T08A025, Washington, DC, Jul. 10–14, 2016. DOI: 10.1115/HT2016-7366.
  • A. Faghri and Y. Zhang, Transport Phenomena in Multiphase Systems. Burlington, USA: Elsevier, 2006.
  • H. Wang, S. V. Garimella, and J. Y. Murthy, “Characteristics of an evaporating thin film in a microchannel,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3933–3942, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.052.
  • H. Azarkish, A. Behzadmehr, L. G. Frechette, T. F. Sheikholeslami, and S. M. H. Sarvari, “A modified disjoining pressure model for thin film evaporation of water,” ASME 2013 International Mechanical Engineering Congress and Exposition, V07BT08A007, San Diego, CA, Nov. 15–21, 2013. DOI: 10.1115/IMECE2013-62986.
  • H. Azarkish, S. Arslan, A. Behzadmehr, T. F. Sheikholeslami, S. M. H. Sarvari, and L. G. Fréchette, “Experimental and numerical investigation of a shaped microchannel evaporator for a micro Rankine cycle application,” Int. J. Therm. Sci., vol. 96, pp. 191–200, 2015. DOI: 10.1016/j.ijthermalsci.2015.05.010.
  • K. H. Do, S. J. Kim, and S. V. Garimella, “A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick,” Int. J. Heat Mass Transf., vol. 51, no. 19–20, pp. 4637–4650, 2008. DOI: 10.1016/j.ijheatmasstransfer.2008.02.039.
  • J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, “Effects of superheat and temperature-dependent thermophysical properties on evaporating thin liquid films in microchannels,” Int. J. Heat Mass Transf., vol. 54, no. 5–6, pp. 1259–1267, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.10.026.
  • P. C. Wayner, Jr., Y. K. Kao, and L. V. LaCroix, “The interline heat-transfer coefficient of an evaporating wetting film,” Int. J. Heat Mass Transf., vol. 19, no. 5, pp. 487–492, 1976. DOI: 10.1016/0017-9310(76)90161-7.
  • R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. Hoboken, NJ: John Wiley and Sons, 2004.
  • H. Azarkish, S. M. H. Sarvari and A. Behzadmehr, “Optimum design of a longitudinal fin array with convection and radiation heat transfer using a genetic algorithm,” Int. J. Therm. Sci., vol. 49, no. 11, pp. 2222–2229, 2010. DOI: 10.1016/j.ijthermalsci.2010.06.023.
  • S. M. Ghiaasiaan, Two Phase Flow, Boiling and Condensation. New York, NY: Cambridge University Press, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.