Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 78, 2020 - Issue 2
408
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effect of laser power on molten pool evolution and convection

ORCID Icon, , , &
Pages 48-59 | Received 19 Apr 2020, Accepted 28 May 2020, Published online: 17 Jun 2020

References

  • S. Saqib, R. J. Urbanic, and K. Aggarwal, “Analysis of laser cladding bead morphology for developing additive manufacturing travel paths,” Proc. CIRP, vol. 17, pp. 824–829, 2014. DOI: 10.1016/j.procir.2014.01.098.
  • T. Yu and Y. Bao, “Research on manufacturing technology of thin-walled parts of Fe105 metal based on laser cladding,” J. Phys.: Conf. Series., Vol. 1187, no.3, 2019. DOI: 10.1088/1742-6596/1187/3/032043.
  • X. Jiang, B. Song, L. Li, M. Dai, and H. Zhang, “The customer satisfaction-oriented planning method for redesign parameters of used machine tools,” Int. J. Prod. Res., vol. 57, no. 4, pp. 1146–1160, 2019. DOI: 10.1080/00207543.2018.1502483.
  • G. Xiao and Y. Huang, “Surface reconstruction of laser-cladding remanufacturing blade using in adaptive belt grinding,” Int. J. Adv. Manuf. Technol., Vol. 101, pp. 3199–3211, 2019. DOI: 10.1007/s00170-019-03489-5.
  • F. Weng, C. Chen, and H. Yu, “Research status of laser cladding on titanium and its alloys: a review,” Mater. Des., vol. 58, pp. 412–425, 2014. DOI: 10.1016/j.matdes.2014.01.077.
  • G. Telasang, J. Dutta Majumdar, G. Padmanabham, M. Tak, and I. Manna, “Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel,” Surf. Coatings Technol., vol. 258, pp. 1108–1118, 2014. DOI: 10.1016/j.surfcoat.2014.07.023.
  • Y. Sun and M. Hao, “Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser,” Opt. Lasers Eng, vol. 50, no. 7, pp. 985–995, 2012. DOI: 10.1016/j.optlaseng.2012.01.018.
  • T. B. Yu, B. X. Song, W. C. Xi, Y. Zhao, and Z. Wang, “Parametric study and optimization of Fe-based alloy powder laser cladding of stainless steel,” Lasers Eng., vol. 44, pp. 11–31, 2019.
  • A. Kumar and S. Roy, “Development of a theoretical process map for laser cladding using a three-dimensional conduction heat transfer model,” Numer. Heat Transf. Part A Appl., Vol. 56, no. 6, pp. 478–496, 2009. DOI: 10.1080/10407780903266489..
  • Z. Gan, G. Yu, X. He, and S. Li, “Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel,” Int. J. Heat Mass Transf., vol. 104, pp. 28–38, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.049.
  • D. V. Bedenko, O. B. Kovalev, I. Smurov, and A. V. Zaitsev, “Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology,” Int. J. Heat Mass Transf., vol. 95, pp. 902–912, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.046.
  • Y. Javid and M. Ghoreishi, “Thermo-mechanical analysis in pulsed laser cladding of WC powder on Inconel 718,” Int J Adv Manuf Technol., vol. 92, no. 1–4, pp. 69–79, 2017. DOI: 10.1007/s00170-017-0117-4.
  • Y. S. Lee, M. Nordin, S. S. Babu, and D. F. Farson, “Influence of fluid convection on weld pool formation in laser cladding,” Weld. J., vol. 93, no. 8, pp. 292–300, 2014.
  • Y. Lee, M. Nordin, S. S. Babu, and D. F. Farson, “Effect of fluid convection on dendrite arm spacing in laser deposition,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., Vol. 45, pp. 1520–1529, 2014. DOI: 10.1007/s11663-014-0054-7..
  • S. Kumar and S. Roy, “The effect of Marangoni-Rayleigh-Benard convection on the process parameters in blown-powder laser cladding process-A numerical investigation,” Numer. Heat Transf. Part A Appl., Vol. 50, no. 3, pp. 689–704, 2006. DOI: 10.1080/10407780600605286.
  • M. F. Gouge, J. C. Heigel, P. Michaleris, and T. A. Palmer, “Modeling forced convection in the thermal simulation of laser cladding processes,” Int. J. Adv. Manuf. Technol., vol. 79, no. 1–4, pp. 307–320, 2015. DOI: 10.1007/s00170-015-6831-x.
  • F. Kong and R. Kovacevic, “Modeling of heat transfer and fluid flow in the laser multilayered cladding process,” Metall. Mater. Trans B, vol. 41, no. 6, pp. 1310–1320, 2010. DOI: 10.1007/s11663-010-9412-2.
  • Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, and A. Chiba, “Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy,” Addit. Manuf., vol. 26, pp. 202–214, 2019. DOI: 10.1016/j.addma.2018.12.002.
  • T. Zhang, “Evolution of molten pool during selective laser melting of Ti-6Al-4V,” J. Phys. D. Appl. Phys., vol. 52, no. 5, pp. 055302, 2019. DOI: 10.1088/1361-6463/aaee04.
  • M. Zheng, et al., “A novel method for the molten pool and porosity formation modelling in selective laser melting,” Int. J. Heat Mass Transf., vol. 140, pp. 1091–1105, Sep. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.038.
  • B. Song, T. Yu, X. Jiang, W. Xi, and X. Lin, “The relationship between convection mechanism and solidification structure of the iron-based molten pool in metal laser direct deposition,” Int. J. Mech. Sci., vol. 165, pp. 105207, 2020. DOI: 10.1016/j.ijmecsci.2019.105207.
  • F. Luo, J. Hua Yao, X. Xia Hu, and G. Zhong Chai, “Effect of Laser Power on the Cladding Temperature Field and the Heat Affected Zone,” J. Iron Steel Res. Int., vol. 18, no. 1, pp. 73–78, 2011. DOI: 10.1016/S1006-706X(11)60014-9.
  • C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” J. Comput. Phys., vol. 39, no. 1, pp. 201–225, 1981. DOI: 10.1016/0021-9991(81)90145-5.
  • Z. Gan, G. Yu, X. He, and S. Li, “Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing,” Int. Commun. Heat Mass Transf., vol. 86, pp. 206–214, 2017. DOI: 10.1016/j.icheatmasstransfer.2017.06.007.
  • J. Schou Risø, “Laser-beam interactions with materials: Physical principles and applications,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, vol. 124, no. 4, pp. 647–648, 1997. DOI: 10.1016/S0168-583X(97)00111-0.
  • H. J. Chang, W. Yook, E. S. Park, J. S. Kyeong, and D. H. Kim, “Synthesis of metallic glass composites using phase separation phenomena,” Acta Mater., vol. 58, no. 7, pp. 2483–2491, 2010. DOI: 10.1016/j.actamat.2009.12.034.
  • C. Li, Z. Yu, J. Gao, J. Zhao, and X. Han, “Numerical simulation and experimental study of cladding Fe60 on an ASTM 1045 substrate by laser cladding,” Surf. Coatings Technol., vol. 357, pp. 965–977, 2019. DOI: 10.1016/j.surfcoat.2018.10.099.
  • E. A. Brandes and G. B. Brook. Smithells Light Metals Handbook. Oxford, United Kingdom: Butterworth-Heinemann, 1998. DOI: 10.1016/b978-0-7506-3625-4.x5000-5.
  • B. Song, T. Yu, X. Jiang, and W. Xi, “Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding,” Numer. Heat Transf. Part A Appl., vol. 75, no. 12, pp. 855–873, 2019. DOI: 10.1080/10407782.2019.1608777.
  • W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book. Oxford, United Kingdom: Butterworth-Heinemann, 2003. DOI: 10.5860/choice.42-1588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.